-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_sket.py
163 lines (140 loc) · 6.01 KB
/
evaluate_sket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import json
import glob
import os
import argparse
from sklearn.metrics import hamming_loss, accuracy_score, classification_report
parser = argparse.ArgumentParser()
parser.add_argument('--gt', default='./ground_truth/celiac/aoec/celiac_labels_allDS.json', type=str, help='Ground truth file.')
parser.add_argument('--outputs', default='./outputs/labels/aoec/celiac/*.json', type=str, help='SKET results file.')
parser.add_argument('--use_case', default='celiac', choices=['colon', 'cervix', 'lung', 'celiac'], help='Considered use-case.')
parser.add_argument('--hospital', default='aoec', choices=['aoec', 'radboud'], help='Considered hospital.')
parser.add_argument('--debug', default=False, action='store_true', help='Whether to use evaluation for debugging purposes.')
args = parser.parse_args()
label2class = {
'cervix': {
'Normal glands': 'glands_norm',
'Normal squamous': 'squamous_norm',
'Cancer - squamous cell carcinoma in situ': 'cancer_scc_insitu',
'Low grade dysplasia': 'lgd',
'Cancer - squamous cell carcinoma invasive': 'cancer_scc_inv',
'High grade dysplasia': 'hgd',
'Koilocytes': 'koilocytes',
'Cancer - adenocarcinoma invasive': 'cancer_adeno_inv',
'Cancer - adenocarcinoma in situ': 'cancer_adeno_insitu',
'HPV infection present': 'hpv'
},
'colon': {
'Hyperplastic polyp': 'hyperplastic',
'Cancer': 'cancer',
'Adenomatous polyp - high grade dysplasia': 'hgd',
'Adenomatous polyp - low grade dysplasia': 'lgd',
'Non-informative': 'ni'
},
'lung': {
'No cancer': 'no_cancer',
'Cancer - non-small cell cancer, adenocarcinoma': 'cancer_nscc_adeno',
'Cancer - non-small cell cancer, squamous cell carcinoma': 'cancer_nscc_squamous',
'Cancer - small cell cancer': 'cancer_scc',
'Cancer - non-small cell cancer, large cell carcinoma': 'cancer_nscc_large'
},
'celiac': {
'Normal': 'normal',
'Celiac disease': 'celiac_disease',
'Non-specific duodenitis': 'duodenitis',
}
}
def main():
# create path for debugging
debug_path = './logs/debug/' + args.hospital + '/' + args.use_case + '/'
os.makedirs(os.path.dirname(debug_path), exist_ok=True)
# read ground-truth
with open(args.gt, 'r') as gtf:
ground_truth = json.load(gtf)
gt = {}
# prepare ground-truth for evaluation
if args.hospital == 'aoec' or args.use_case == 'celiac':
ground_truth = ground_truth['groundtruths']
else:
ground_truth = ground_truth['ground_truth']
for data in ground_truth:
if args.hospital == 'aoec' or args.use_case == 'celiac':
rid = data['id_report']
else:
rid = data['report_id_not_hashed']
if len(rid.split('_')) == 3 and args.hospital == 'aoec': # contains codeint info not present within new processed reports
rid = rid.split('_')
rid = rid[0] + '_' + rid[2]
gt[rid] = {label2class[args.use_case][label]: 0 for label in label2class[args.use_case].keys()}
for datum in data['labels']:
label = label2class[args.use_case][datum['label']]
if label in gt[rid]:
gt[rid][label] = 1
# gt name
gt_name = args.gt.split('/')[-1].split('.')[0]
# read SKET results
if '*.json' == args.outputs.split('/')[-1]: # read files
# read file paths
rsfps = glob.glob(args.outputs)
# set dict
rs = {}
for rsfp in rsfps:
with open(rsfp, 'r') as rsf:
rs.update(json.load(rsf))
else: # read file
with open(args.outputs, 'r') as rsf:
rs = json.load(rsf)
sket = {}
# prepare SKET results for evaluation
for rid, rdata in rs.items():
if args.use_case == 'colon' and args.hospital == 'aoec' and '2ndDS' in args.gt:
rid = rid.split('_')[0]
if args.hospital == 'radboud':
sket[rid] = rdata['labels']
else:
sket[rid] = rdata
# fix class order to avoid inconsistencies
rids = list(sket.keys())
classes = list(sket[rids[0]].keys())
if args.use_case == 'celiac':
classes.remove('inconclusive')
# obtain ground-truth and SKET scores
gt_scores = []
sket_scores = []
if args.debug: # open output for debugging
debugf = open(debug_path + gt_name + '.txt', 'w+')
for rid in gt.keys():
gt_rscores = []
sket_rscores = []
if rid not in sket:
print('skipped gt record: {}'.format(rid))
continue
if args.debug:
first = True
for c in classes:
#if c != 'inconclusive':
gt_rscores.append(gt[rid][c])
sket_rscores.append(sket[rid][c])
if args.debug: # perform debugging
if gt[rid][c] != sket[rid][c]: # store info for debugging purposes
if first: # first occurence
debugf.write('\nReport ID: {}\n'.format(rid))
first = False
debugf.write(c + ': gt = {}, sket = {}\n'.format(gt[rid][c], sket[rid][c]))
gt_scores.append(gt_rscores)
sket_scores.append(sket_rscores)
if args.debug: # close output for debugging
debugf.close()
# convert to numpy
gt_scores = np.array(gt_scores)
sket_scores = np.array(sket_scores)
# compute evaluation measures
print('Compute evaluation measures')
# exact match accuracy & hamming loss
print("Accuracy (exact match): {}".format(accuracy_score(gt_scores, sket_scores)))
print("Hamming loss: {}\n".format(hamming_loss(gt_scores, sket_scores)))
# compute classification report
print("Classification report:")
print(classification_report(y_true=gt_scores, y_pred=sket_scores, target_names=classes))
if __name__ == "__main__":
main()