-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpostproamrwindabl.py
443 lines (405 loc) · 16.1 KB
/
postproamrwindabl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#!/usr/bin/env python
#
# Copyright (c) 2022, Alliance for Sustainable Energy
#/
# This software is released under the BSD 3-clause license. See LICENSE file
# for more details.
#
#
#
import numpy as np
import math
import sys
from netCDF4 import Dataset
import matplotlib.pyplot as plt
import os.path as path
from collections import OrderedDict
from scipy import interpolate
from scipy.optimize import curve_fit
import mmap
scalarvars=[u'time', u'Q', u'Tsurf', u'ustar', u'wstar', u'L', u'zi', u'abl_forcing_x', u'abl_forcing_y']
stdvars = ['u', 'v', 'w', 'theta',
u"u'u'_r", u"u'v'_r", u"u'w'_r",
u"v'v'_r", u"v'w'_r", u"w'w'_r",
u"u'theta'_r", u"v'theta'_r", u"w'theta'_r",
'k_sgs', 'k_rans', 'sdr', 'eps', 'mueff',
'abl_meso_forcing_mom_x', 'abl_meso_forcing_mom_y',
'abl_meso_forcing_mom_theta']
exprvars = { "u":'[u]',
"v":'[v]',
"w":'[w]',
"theta":'[T]',
u"u'u'_r": '[uu]',
u"u'v'_r":'[uv]',
u"u'w'_r":'[uw]',
u"v'v'_r":'[vv]',
u"v'w'_r":'[vw]',
u"w'w'_r":'[ww]',
u"u'theta'_r":'[uT]',
u"v'theta'_r":'[vT]',
u"w'theta'_r":'[wT]',
'k_sgs':'[k_sgs]',
'k_rans':'[k_rans]',
'mueff':'[mueff]',
'sdr':'[sdr]',
'eps':'[eps]',
'abl_meso_forcing_mom_x':'[abl_meso_forcing_mom_x]',
'abl_meso_forcing_mom_y':'[abl_meso_forcing_mom_y]',
'abl_meso_forcing_mom_theta':'[abl_meso_forcing_mom_theta]',
}
def timeaverage(t, dat, t1, t2):
Ndim = len(np.shape(dat))
tfiltered = t[(t>=t1)&(t<=t2)]
if Ndim==1:
datfiltered = dat[(t>=t1)&(t<=t2)]
else:
datfiltered = dat[(t>=t1)&(t<=t2),:]
Nvars = len(dat[0,:])
tstart = tfiltered[0]
tend = tfiltered[-1]
avgdat = 0.0 if Ndim==1 else np.zeros(Nvars)
for i in range(len(tfiltered)-1):
dt = tfiltered[i+1] - tfiltered[i]
if Ndim==1:
avgdat = avgdat + 0.5*dt*(datfiltered[i+1] + datfiltered[i])
else:
avgdat = avgdat + 0.5*dt*(datfiltered[i+1,:] + datfiltered[i,:])
return avgdat/(tend-tstart)
def loadnetcdffile(filename, usemmap=False):
if path.exists(filename):
if usemmap:
print("Loading entire file into memory...")
with open(filename, 'rb') as f:
mm = mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ,
flags=mmap.MAP_PRIVATE)
ncread = mm.read()
return Dataset('inmemory.nc', memory=ncread)
else:
return Dataset(filename)
else:
print("%s DOES NOT EXIST."%filename)
return None
def loadProfileData(d, varslist=stdvars, group='mean_profiles', avgt=[],
usemapped=True):
alldat={}
t = d.variables['time'][:]
alldat['time'] = t
alldat['avgt'] = avgt
if usemapped and ('hmapped' in d['mean_profiles'].variables.keys()):
alldat['z'] = d['mean_profiles'].variables['hmapped'][:]
else:
alldat['z'] = d['mean_profiles'].variables['h'][:]
for var in varslist:
print('Loading '+var)
x = d[group].variables[var][:,:]
if len(avgt)>=2:
t1 = avgt[0]
t2 = avgt[1]
alldat[var] = timeaverage(t, x, t1, t2)
else:
alldat[var] = x
return alldat
def matchvarstimes(dic, varnames, avgt):
# get all keys in dic
allkeys = [key for key, x in dic.items()]
for var in varnames:
if var not in allkeys: return False
if dic['avgt'] != avgt: return False
return True
def calculateShearAlpha(allvars, ncdat=None, avgt=None,span=None):
# compute Umag
u_mag = np.sqrt(allvars['u']**2 + allvars['v']**2)
z = allvars['z']
dudz = (u_mag[1:]-u_mag[0:-1])/(z[1:]-z[0:-1])
dudz=np.append(dudz, dudz[-1])
alpha=z/u_mag*dudz
return z, alpha
def calculateShearAlpha_Fit(allvars, ncdat=None, avgt=None,span=None):
#define functional form for wind speed profile
def func(x,a,b):
return b*x**a
u_mag = np.sqrt(allvars['u']**2 + allvars['v']**2)
z = allvars['z']
if span == None:
print("Rotor span not specified. Fitting alpha over entire vertical domain")
popt, pcov = curve_fit(func,z,u_mag)
else:
#only perform fit over rotor span
z_span = (z >= span[0]) & (z <= span[1])
popt, pcov = curve_fit(func,z[z_span],u_mag[z_span])
return z, np.full_like(z,popt[0])
def calculateVeer(allvars, ncdat=None, avgt=None,span=None):
#approximate the veer as d\Theta/dz with centered difference
wind_dir = 270-np.arctan2(allvars['v'], allvars['u'])*180.0/math.pi
z = allvars['z']
dwindDirdz = (wind_dir[1:]-wind_dir[0:-1])/(z[1:]-z[0:-1])
dwindDirdz=np.append(dwindDirdz, dwindDirdz[-1])
return z, dwindDirdz
def calculateVeer_Fit(allvars, ncdat=None, avgt=None,span=None):
wind_dir = 270-np.arctan2(allvars['v'], allvars['u'])*180.0/math.pi
z = allvars['z']
#calculate hub-height wind direction accounting for the discontinuity from 0/360 deg
ydata = wind_dir - wind_dir[0]
for j in range(len(ydata))[1:]:
temp1 = ydata[j]
temp2 = ydata[j] + 360
temp3 = ydata[j] - 360
tempvector = [temp1,temp2,temp3]
tempvector_absolute = np.absolute(tempvector)
min_value = min(tempvector_absolute)
min_index = np.nonzero(tempvector_absolute == min_value)
temp = np.asarray(min_index[0])
ydata[j] = tempvector[temp[0]]
def func(x, a, b):
return a*x+b
if span == None:
print("Rotor span not specified. Fitting veer over entire vertical domain")
popt, pcov = curve_fit(func,z,ydata)
else:
#only perform fit over rotor span
z_span = (z >= span[0]) & (z <= span[1])
popt, pcov = curve_fit(func,z[z_span],ydata[z_span])
return z, np.full_like(z,popt[0])
def calculateObukhovL(allvars, ncdat=None, avgt=None,span=None):
k = 0.40
g = 9.81
z = allvars['z']
ustar = timeAvgScalar(ncdat, 'ustar', avgt)
Oblength = -ustar**3/(k*g/allvars['theta']*allvars[u"w'theta'_r"])
return z, Oblength
def calculateExpr(expr, allvars, avgt, ncdat, usemapped=True):
requiredvars = ['u', 'v']
if not matchvarstimes(allvars, requiredvars, avgt):
# Load the data from the ncdat file
var = loadProfileData(ncdat, varslist=requiredvars, avgt=avgt)
else:
var = allvars
# Calculate the expression
Nz = len(var['z'])
vec = []
for i in range(Nz):
answer=expr
for v in requiredvars:
exprv = exprvars[v]
answer=answer.replace(exprv.encode().decode('utf-8'), '('+repr(var[v][i])+')')
vec.append(eval(answer))
# compute U horizontal
return var['z'], np.array(vec)
statsprofiles_ = OrderedDict()
def registerstatsprofile(f):
defdict = {'requiredvars':f.requiredvars,
'header':f.header,
'expr':f.expr,
'funcstring':f.funcstring}
statsprofiles_[f.key] = defdict
#print("Added "+f.key+" profile")
return f
@registerstatsprofile
class velocityprof():
key = 'velocity'
requiredvars = ['u', 'v', 'w']
header = 'u v w'
expr = '[[u], [v], [w]]'
funcstring = False
# A dictionary with all of the variables you can plot
statsprofiles=OrderedDict([
('velocity', {'requiredvars':['u', 'v', 'w'],
'header':'u v w',
'expr':'[[u], [v], [w]]',
'funcstring':False}),
('Uhoriz', {'requiredvars':['u', 'v'],
'header':'Uhoriz',
'expr':'np.sqrt([u]**2 + [v]**2)',
'funcstring':False}),
('WindDir', {'requiredvars':['u', 'v'],
'header':'WindDir',
'expr':'270-np.arctan2([v], [u])*180.0/math.pi',
'funcstring':False}),
('Temperature', {'requiredvars':['theta'],
'header':'T',
'expr':'[T]',
'funcstring':False}),
('TI_TKE', {'requiredvars':['u', 'v', u"u'u'_r", u"v'v'_r", u"w'w'_r",],
'header':'TI_TKE',
'expr':'np.sqrt(([uu]+[vv]+[ww])/3.0)/np.sqrt([u]**2 + [v]**2)',
'funcstring':False}),
('TI_horiz', {'requiredvars':['u', 'v', u"u'u'_r", u"v'v'_r"],
'header':'TI_horiz',
'expr':'np.sqrt([uu]+[vv])/np.sqrt([u]**2 + [v]**2)',
'funcstring':False}),
('TKE', {'requiredvars':[u"u'u'_r", u"v'v'_r", u"w'w'_r",],
'header':'TKE',
'expr':'0.5*([uu]+[vv]+[ww])',
'funcstring':False}),
('KSGS', {'requiredvars':['k_sgs'],
'header':'k_sgs',
'expr':'[k_sgs]',
'funcstring':False}),
('KRANS', {'requiredvars':['k_rans'],
'header':'k_rans',
'expr':'[k_rans]',
'funcstring':False}),
('SDR_OMEGA', {'requiredvars':['sdr'],
'header':'sdr',
'expr':'[sdr]',
'funcstring':False}),
('ReStresses',{'requiredvars':[u"u'u'_r", u"u'v'_r", u"u'w'_r",
u"v'v'_r", u"v'w'_r", u"w'w'_r",],
'header':'uu uv uw vv vw ww',
'expr':'[[uu], [uv], [uw], [vv], [vw], [ww]]',
'funcstring':False}),
('Tfluxes',{'requiredvars':[u"u'theta'_r", u"v'theta'_r", u"w'theta'_r",],
'header':'uT vT wT',
'expr':'[[uT], [vT], [wT]]',
'funcstring':False}),
('MUEFF', {'requiredvars':['mueff'],
'header':'mueff',
'expr':'[mueff]',
'funcstring':False}),
('Alpha', {'requiredvars':['u', 'v'],
'header':'alpha',
'expr':'calculateShearAlpha',
'funcstring':True}),
('Alpha-Fit', {'requiredvars':['u', 'v'],
'header':'alpha',
'expr':'calculateShearAlpha_Fit',
'funcstring':True}),
('Veer', {'requiredvars':['u', 'v'],
'header':'veer',
'expr':'calculateVeer',
'funcstring':True}),
('Veer-Fit', {'requiredvars':['u', 'v'],
'header':'veer',
'expr':'calculateVeer_Fit',
'funcstring':True}),
('ObukhovL', {'requiredvars':['theta', u"w'theta'_r"],
'header':'ObukhovL',
'expr':'calculateObukhovL',
'funcstring':True}),
('MMC-forcing', {'requiredvars':['abl_meso_forcing_mom_x',
'abl_meso_forcing_mom_y',
],
'header':'abl_meso_forcing_mom_x abl_meso_forcing_mom_y',
'expr':'[[abl_meso_forcing_mom_x], [abl_meso_forcing_mom_y]]',
'funcstring':False}),
])
class CalculatedProfile:
def __init__(self, requiredvars, expr, ncdat, allvardata, avgt, span=None,header='',
funcstring=False, usemapped=True):
self.requiredvars = requiredvars
self.expr = expr
self.ncdat = ncdat
self.allvardata = allvardata
self.avgt = avgt
self.vec = None
self.funcstring = funcstring
self.header = header
self.usemapped = usemapped
self.span = span
@classmethod
def fromdict(cls, d, ncdat, allvardata, avgt, span=None,usemapped=True):
return cls(d['requiredvars'], d['expr'], ncdat, allvardata, avgt,span,
header=d['header'], funcstring=d['funcstring'],
usemapped=usemapped)
def calculate(self, allvars=None, avgt=None,span=None):
if allvars is None: allvars = self.allvardata
if avgt is None: avgt = self.avgt
if span is None: span = self.span
if not matchvarstimes(allvars, self.requiredvars, avgt):
# Load the data from the ncdat file
var = loadProfileData(self.ncdat,
varslist=self.requiredvars,
avgt=avgt, usemapped=self.usemapped)
self.allvardata = var
else:
var = allvars
# Now evalulate the function
if self.funcstring:
z, vec = eval(self.expr+"(var, ncdat=self.ncdat, avgt=avgt,span=span)")
else:
# Calculate the expression
Nz = len(var['z'])
vec = []
for i in range(Nz):
answer=self.expr
for v in self.requiredvars:
exprv = exprvars[v]
answer= answer.replace(exprv.encode().decode('utf-8'),
'('+repr(var[v][i])+')')
evalans = eval(answer)
vec.append(evalans)
vec = np.array(vec)
self.z = var['z']
self.vec = vec
return var['z'], vec
def save(self, filename, allvars=None, avgt=None, extraheader=''):
# Calculate the quantity
z, vec = self.calculate(allvars=allvars, avgt=avgt)
# Save it to the filename
savedat = np.vstack((z, vec.transpose())).transpose()
if len(extraheader)>0:
header = extraheader + "\nz "+self.header
else:
header = "z "+self.header
np.savetxt(filename, savedat, header=header)
return
def extractScalarTimeHistory(ncdat, var):
# Pull out the time
t = np.array(ncdat.variables['time'])
v = np.array(ncdat.variables[var])
return t, v
def timeAvgScalar(ncdat, var, avgt):
# Pull out the time history first
t, v = extractScalarTimeHistory(ncdat, var)
# Average it
avgv = timeaverage(t, v, avgt[0], avgt[1])
return avgv
def printReport(ncdat, heights, avgt, span,verbose=True):
"""
Print out a report of the ABL statistics at given heights
"""
# Dict which holds all of the output variables
reportvars={}
# Get the scalar quantities
avgustar = timeAvgScalar(ncdat, 'ustar', avgt)
reportvars['ustar'] = avgustar
# Get the profile quantities
profvars = ['Uhoriz', 'WindDir', 'TI_TKE', 'TI_horiz', 'Alpha', 'Alpha-Fit','ObukhovL','Veer','Veer-Fit']
# Build the list of all required variables
requiredvars = []
for var in profvars:
neededvars = statsprofiles[var]['requiredvars']
requiredvars = list(set(requiredvars) | set(neededvars))
# Load the variables
alldata = loadProfileData(ncdat, varslist=requiredvars, avgt=avgt)
# Get the profile quantities
for var in profvars:
# Get the quantity at every height
prof=CalculatedProfile.fromdict(statsprofiles[var],ncdat, alldata, avgt,span)
z, qdat = prof.calculate()
interpf = interpolate.interp1d(z, qdat)
reportvars[var]=[interpf(z) for z in heights]
if verbose:
# Print the header
sys.stdout.write('%9s '%'z')
for var in profvars: sys.stdout.write('%12s '%var)
sys.stdout.write('\n')
sys.stdout.write('%9s '%'===')
for var in profvars: sys.stdout.write('%12s '%'====')
sys.stdout.write('\n')
# write the results
for iz, z in enumerate(heights):
sys.stdout.write('%9.2f '%z)
for var in profvars :
sys.stdout.write('%12e '%reportvars[var][iz])
sys.stdout.write('\n')
sys.stdout.write('\n')
sys.stdout.write('ustar: %f'%reportvars['ustar'])
sys.stdout.write('\n')
return reportvars
if __name__ == "__main__":
ncdat=loadnetcdffile('abl_statistics00000.nc')
avgt=[15000, 20000]
heights=[60.0, 91.0]
#printReport(ncdat, heights, avgt, verbose=True)
CalculatedProfile.fromdict(statsprofiles['velocity'], ncdat, {}, avgt).save('velocity.dat')