Skip to content

Latest commit

 

History

History
215 lines (140 loc) · 7.66 KB

DATASET.md

File metadata and controls

215 lines (140 loc) · 7.66 KB

TRELLIS-500K

TRELLIS-500K is a dataset of 500K 3D assets curated from Objaverse(XL), ABO, 3D-FUTURE, HSSD, and Toys4k, filtered based on aesthetic scores. This dataset serves for 3D generation tasks.

The dataset is provided as csv files containing the 3D assets' metadata.

Dataset Statistics

The following table summarizes the dataset's filtering and composition:

NOTE: Some of the 3D assets lack text captions. Please filter out such assets if captions are required.

Source Aesthetic Score Threshold Filtered Size With Captions
ObjaverseXL (sketchfab) 5.5 168307 167638
ObjaverseXL (github) 5.5 311843 306790
ABO 4.5 4485 4390
3D-FUTURE 4.5 9472 9291
HSSD 4.5 6670 6661
All (training set) - 500777 494770
Toys4k (evaluation set) 4.5 3229 3180

Dataset Location

The dataset is hosted on Hugging Face Datasets. You can preview the dataset at

https://huggingface.co/datasets/JeffreyXiang/TRELLIS-500K

There is no need to download the csv files manually. We provide toolkits to load and prepare the dataset.

Dataset Toolkits

We provide toolkits for data preparation.

Step 1: Install Dependencies

. ./dataset_toolkits/setup.sh

Step 2: Load Metadata

First, we need to load the metadata of the dataset.

python dataset_toolkits/build_metadata.py <SUBSET> --output_dir <OUTPUT_DIR> [--source <SOURCE>]
  • SUBSET: The subset of the dataset to load. Options are ObjaverseXL, ABO, 3D-FUTURE, HSSD, and Toys4k.
  • OUTPUT_DIR: The directory to save the data.
  • SOURCE: Required if SUBSET is ObjaverseXL. Options are sketchfab and github.

For example, to load the metadata of the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/build_metadata.py ObjaverseXL --source sketchfab --output_dir datasets/ObjaverseXL_sketchfab

Step 3: Download Data

Next, we need to download the 3D assets.

python dataset_toolkits/download.py <SUBSET> --output_dir <OUTPUT_DIR> [--rank <RANK> --world_size <WORLD_SIZE>]
  • SUBSET: The subset of the dataset to download. Options are ObjaverseXL, ABO, 3D-FUTURE, HSSD, and Toys4k.
  • OUTPUT_DIR: The directory to save the data.

You can also specify the RANK and WORLD_SIZE of the current process if you are using multiple nodes for data preparation.

For example, to download the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

NOTE: The example command below sets a large WORLD_SIZE for demonstration purposes. Only a small portion of the dataset will be downloaded.

python dataset_toolkits/download.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab --world_size 160000

Some datasets may require interactive login to Hugging Face or manual downloading. Please follow the instructions given by the toolkits.

Step 4: Render Multiview Images

Multiview images can be rendered with:

python dataset_toolkits/render.py <SUBSET> --output_dir <OUTPUT_DIR> [--num_views <NUM_VIEWS>] [--rank <RANK> --world_size <WORLD_SIZE>]
  • SUBSET: The subset of the dataset to render. Options are ObjaverseXL, ABO, 3D-FUTURE, HSSD, and Toys4k.
  • OUTPUT_DIR: The directory to save the data.
  • NUM_VIEWS: The number of views to render. Default is 150.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to render the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/render.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

Step 5: Voxelize 3D Models

We can voxelize the 3D models with:

python dataset_toolkits/voxelize.py <SUBSET> --output_dir <OUTPUT_DIR> [--rank <RANK> --world_size <WORLD_SIZE>]
  • SUBSET: The subset of the dataset to voxelize. Options are ObjaverseXL, ABO, 3D-FUTURE, HSSD, and Toys4k.
  • OUTPUT_DIR: The directory to save the data.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to voxelize the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/voxelize.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

Step 6: Extract DINO Features

To prepare the training data for SLat VAE, we need to extract DINO features from multiview images and aggregate them into sparse voxel grids.

python dataset_toolkits/extract_features.py --output_dir <OUTPUT_DIR> [--rank <RANK> --world_size <WORLD_SIZE>]
  • OUTPUT_DIR: The directory to save the data.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to extract DINO features from the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/extract_feature.py --output_dir datasets/ObjaverseXL_sketchfab

Now the metadata file should be updated manually:

python dataset_toolkits/build_metadata.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

Step 7: Encode Sparse Structures

Encoding the sparse structures into latents to train the first stage generator:

python dataset_toolkits/encode_ss_latent.py --output_dir <OUTPUT_DIR> [--rank <RANK> --world_size <WORLD_SIZE>]
  • OUTPUT_DIR: The directory to save the data.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to encode the sparse structures into latents for the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/encode_ss_latent.py --output_dir datasets/ObjaverseXL_sketchfab

Then update the metadata file with:

python dataset_toolkits/build_metadata.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

Step 8: Encode SLat

Encoding SLat for second stage generator training:

python dataset_toolkits/encode_latent.py --output_dir <OUTPUT_DIR> [--rank <RANK> --world_size <WORLD_SIZE>]
  • OUTPUT_DIR: The directory to save the data.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to encode SLat for the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/encode_latent.py --output_dir datasets/ObjaverseXL_sketchfab

Then update the metadata file with:

python dataset_toolkits/build_metadata.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

Step 9: Render Image Conditions

To train the image conditioned generator, we need to render image conditions with augmented views.

python dataset_toolkits/render_cond.py <SUBSET> --output_dir <OUTPUT_DIR> [--num_views <NUM_VIEWS>] [--rank <RANK> --world_size <WORLD_SIZE>]
  • SUBSET: The subset of the dataset to render. Options are ObjaverseXL, ABO, 3D-FUTURE, HSSD, and Toys4k.
  • OUTPUT_DIR: The directory to save the data.
  • NUM_VIEWS: The number of views to render. Default is 24.
  • RANK and WORLD_SIZE: Multi-node configuration.

For example, to render image conditions for the ObjaverseXL (sketchfab) subset and save it to datasets/ObjaverseXL_sketchfab, we can run:

python dataset_toolkits/render_cond.py ObjaverseXL --output_dir datasets/ObjaverseXL_sketchfab

All in ONE Script

Merge all above procedures into a single shell script:

bash dataset_toolkits/dataset_pipe.sh