forked from microsoft/TRELLIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
75 lines (67 loc) · 2.55 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
# os.environ['ATTN_BACKEND'] = 'xformers' # Can be 'flash-attn' or 'xformers', default is 'flash-attn'
os.environ['SPCONV_ALGO'] = 'native' # Can be 'native' or 'auto', default is 'auto'.
# 'auto' is faster but will do benchmarking at the beginning.
# Recommended to set to 'native' if run only once.
import imageio
import torch
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils, postprocessing_utils
use_gpu = True
# Low VRAM mode, NOTICE that if the model is intended to be run on CPU, set to False
low_vram = False
# Load a pipeline from a model folder or a Hugging Face model hub.
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.low_vram = low_vram
if not low_vram and use_gpu:
# Move to GPU immediately
pipeline.cuda()
# Load an image
# image = Image.open("assets/example_image/T.png")
image = Image.open("assets/example_image/typical_humanoid_mech.png")
# Run the pipeline
outputs = pipeline.run(
image,
seed=1,
# Optional parameters
# sparse_structure_sampler_params={
# "steps": 12,
# "cfg_strength": 7.5,
# },
# slat_sampler_params={
# "steps": 12,
# "cfg_strength": 3,
# },
)
# outputs is a dictionary containing generated 3D assets in different formats:
# - outputs['gaussian']: a list of 3D Gaussians
# - outputs['radiance_field']: a list of radiance fields
# - outputs['mesh']: a list of meshes
if low_vram:
del pipeline
torch.cuda.empty_cache()
# Render the outputs
video = render_utils.render_video(outputs['gaussian'][0])['color']
imageio.mimsave("sample_gs.mp4", video, fps=30)
video = render_utils.render_video(outputs['radiance_field'][0])['color']
imageio.mimsave("sample_rf.mp4", video, fps=30)
video = render_utils.render_video(outputs['mesh'][0])['normal']
imageio.mimsave("sample_mesh.mp4", video, fps=30)
# GLB files can be extracted from the outputs
glb = postprocessing_utils.to_trimesh(
outputs['gaussian'][0],
outputs['mesh'][0],
# Optional parameters
texture_bake_mode='fast' if low_vram else 'opt', # Low VRAM mode defaults baking to fast mode
# Postprocessing methods
postprocess_mode='simplify',
remesh_iters=10,
subdivision_times=1,
simplify=0.95, # Ratio of triangles to remove in the simplification process
texture_size=512 if low_vram else 1024, # Size of the texture used for the GLB
debug=False,
verbose=True)
glb.export("sample.glb")
# Save Gaussians as PLY files
outputs['gaussian'][0].save_ply("sample.ply")