forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane.py
541 lines (450 loc) · 24.2 KB
/
lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import os
import glob
import cv2
import numpy as np
import pickle
from moviepy.editor import VideoFileClip
# Camera calibration coefficients
mtx = None
dist = None
# Perspective Transform
M = None
Minv = None
# Polynomial Fits
LEFT_LINE = None
RIGHT_LINE = None
#left_fit = None
#right_fit = None
# Hyperparameters
S_THRESHOLD = (170, 255)
SX_THRESHOLD = (40, 100)
TRANSFORM_SRC_POINT = np.float32([[609,440],[674,440],[229,719],[1119,719]])
TRANSFORM_DEST_RATIO = 0.6
TRANSFORM_DEST_POINT = None
def save_image(image, filename, suffix):
filename.replace('\\', '/')
splitted_folder_file = filename.split('/')
splitted_file_ext = splitted_folder_file[1].split('.')
write_name = splitted_folder_file[0] + '/' + splitted_file_ext[0] + '_' + suffix + '.' + splitted_file_ext[1]
cv2.imwrite(write_name, image)
def calibrate_camera():
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,5,0)
objp = np.zeros((9*6,3), np.float32)
objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob('camera_cal\calibration*.jpg')
# Step through the list and search for chessboard corners
for filename in images:
img = cv2.imread(filename)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (9,6), None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw the corners and save
cv2.drawChessboardCorners(img, (9,6), corners, ret)
save_image(img, filename, 'corners_found')
# Do camera calibration given object points and image points
test_img = cv2.imread('camera_cal/calibration2.jpg')
img_size = (test_img.shape[1], test_img.shape[0])
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Undistort the test image
dst = cv2.undistort(test_img, mtx, dist, None, mtx)
cv2.imwrite('camera_cal/calibration2_undistorted.jpg',dst)
# Save the camera calibration result for later use
camera_calibration = {}
camera_calibration["mtx"] = mtx
camera_calibration["dist"] = dist
with open('camera_calibration.pickle', 'wb') as pickle_file:
pickle.dump(camera_calibration, pickle_file)
def binary_threshold(image, s_thresh=(170, 255), sx_thresh=(20, 100)):
img = np.copy(image)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float)
l_channel = hls[:,:,1]
s_channel = hls[:,:,2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 255
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 255
# Combine the two binary thresholds
combined_binary = np.zeros_like(sxbinary)
combined_binary[(s_binary == 255) | (sxbinary == 255)] = 255
# Stack each channel
# Note color_binary[:, :, 0] is all 0s, effectively an all black image. It might
# be beneficial to replace this channel with something else.
color_binary = np.dstack((s_binary, sxbinary, np.zeros_like(sxbinary)))
return combined_binary
def find_lines(image):
global LEFT_LINE
global RIGHT_LINE
# Input : warped binary thresholded image
# Output :
# out_img = None
# ploty = None
# left_fitx = None
# right_fitx = None
# radius_of_curvature = None
# car_pos = None
# Choose the number of sliding windows
nwindows = 9
# Set the width of the windows +/- margin
margin = 90
# Set minimum number of pixels found to recenter window
minpix = 100
def sliding_window(image):
# Take a histogram of the bottom half of the image
histogram = np.sum(image[int(image.shape[0]/2):,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((image, image, image))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Set height of windows
window_height = np.int(image.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = image.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = image.shape[0] - (window+1)*window_height
win_y_high = image.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
current = np.int(np.mean(nonzerox[good_left_inds]))
leftx_dif = leftx_current - current
leftx_current = current
if len(good_right_inds) > minpix:
current = np.int(np.mean(nonzerox[good_right_inds]))
rightx_dif = rightx_current - current
rightx_current = current
# If one window is found, set the other window with the same offset
if (len(good_left_inds) > minpix) and not(len(good_right_inds) > minpix):
rightx_current = rightx_current - leftx_dif
if not(len(good_left_inds) > minpix) and (len(good_right_inds) > minpix):
leftx_current = leftx_current - rightx_dif
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, image.shape[0]-1, image.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# draw the pixels detected by the sliding window
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
return out_img, ploty, left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty
def fit_window(image, left_fit, right_fit):
# The polynomial fit is already detected on the last frame
# It's now much easier to find line pixels!
nonzero = image.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
old_left_fit = left_fit
old_right_fit = right_fit
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, image.shape[0]-1, image.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
old_left_fitx = old_left_fit[0]*ploty**2 + old_left_fit[1]*ploty + old_left_fit[2]
old_right_fitx = old_right_fit[0]*ploty**2 + old_right_fit[1]*ploty + old_right_fit[2]
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((image, image, image))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([old_left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([old_left_fitx+margin,
ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([old_right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([old_right_fitx+margin,
ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the search window area
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0))
out_img = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
return out_img, ploty, left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty
def draw_calculate(image, ploty, left_fitx, right_fitx):
# Draw the fitted lines
left_fitx_clipped = np.empty_like(left_fitx)
right_fitx_clipped = np.empty_like(right_fitx)
np.clip(left_fitx, 0, 1279, out=left_fitx_clipped)
np.clip(right_fitx, 0, 1279, out=right_fitx_clipped)
out_img[ploty.astype(int), left_fitx_clipped.astype(int)] = [255, 255, 0]
out_img[ploty.astype(int), right_fitx_clipped.astype(int)] = [255, 255, 0]
# Calculate radius of curvature
# Define y-value where we want radius of curvature
# I'll choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# Define conversions in x and y from pixels space to meters
# meters per pixel in y dimension
ym_per_pix = 32/720
# meters per pixel in x dimension
xm_per_pix = 3.7/(TRANSFORM_DEST_POINT[1][0] - TRANSFORM_DEST_POINT[0][0])
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_radius_of_curvature = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_radius_of_curvature = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# left_radius_of_curvature = ((1 + (2*(xm_per_pix/(ym_per_pix)**2)*left_fit[0]*y_eval + (xm_per_pix/ym_per_pix)*left_fit[1])**2)**1.5) / np.absolute(2*(xm_per_pix/(ym_per_pix)**2)*left_fit[0])
# right_radius_of_curvature = ((1 + (2*(xm_per_pix/(ym_per_pix)**2)*right_fit[0]*y_eval + (xm_per_pix/ym_per_pix)*right_fit[1])**2)**1.5) / np.absolute(2*(xm_per_pix/(ym_per_pix)**2)*right_fit[0])
radius_of_curvature = (left_radius_of_curvature + right_radius_of_curvature)/2
# Calculate the car position relative to the center of the lanes
car_pos = (640 - (right_fitx[719] + left_fitx[719])/2) * xm_per_pix
return out_img, ploty, left_fitx, right_fitx, radius_of_curvature, car_pos
def sanity_check(ploty, fit, fitx, x, y, line):
# if np.sum(np.absolute(left_fitx - left_line.recent_xfitted[-1])) > 1000:
# return False
# if np.sum(np.absolute(right_fitx - right_line.recent_xfitted[-1])) > 1000:
# return False
# left_fit_diff = np.absolute(left_fit - left_line.current_fit)
# if left_fit_diff[0] > 2:
# return False
# if left_fit_diff[1] > 2:
# return False
# right_fit_diff = np.absolute(right_fit - right_line.current_fit)
# if right_fit_diff[0] > 2:
# return False
# if right_fit_diff[1] > 2:
# return False
# The A coefficient does not jump wildly
# if len(line.recent_fit)==5 and abs(fit[0] - sum(list(zip(*line.recent_fit))[0])/5) > 0.00035:
# return False
if not np.any(x[y<360]):
return False
return True
def sanity_check_both(ploty, left_fit, right_fit, left_fitx, right_fitx, left_line, right_line):
# The distance between the detected lines is reasonable
if np.absolute(np.absolute(np.mean(left_fitx - right_fitx)) - (TRANSFORM_DEST_POINT[1][0] - TRANSFORM_DEST_POINT[0][0])) > 100:
return False
return True
if LEFT_LINE is None:
# Create line objects to hold recent data
LEFT_LINE = Line()
RIGHT_LINE = Line()
# Perform sliding window to detect line
out_img, ploty, left_fit, right_fit, left_fitx, right_fitx, _, _, _, _ = sliding_window(image)
# Update the line objects
LEFT_LINE.detected = True
LEFT_LINE.recent_xfit.append(left_fitx)
LEFT_LINE.recent_fit.append(left_fit)
RIGHT_LINE.detected = True
RIGHT_LINE.recent_xfit.append(right_fitx)
RIGHT_LINE.recent_fit.append(right_fit)
else:
# Perform fit window to detect line
out_img, ploty, left_fit, right_fit, left_fitx, right_fitx, leftx, lefty, rightx, righty = fit_window(image, LEFT_LINE.recent_fit[-1], RIGHT_LINE.recent_fit[-1])
left_sane = sanity_check(ploty, left_fit, left_fitx, leftx, lefty, LEFT_LINE)
right_sane = sanity_check(ploty, right_fit, right_fitx, rightx, righty, RIGHT_LINE)
if left_sane and not right_sane:
right_fit = list(left_fit)
right_fit[2] += (TRANSFORM_DEST_POINT[1][0] - TRANSFORM_DEST_POINT[0][0])
RIGHT_LINE.detected = False
LEFT_LINE.detected = True
if not left_sane and right_sane:
left_fit = list(right_fit)
left_fit[2] -= (TRANSFORM_DEST_POINT[1][0] - TRANSFORM_DEST_POINT[0][0])
LEFT_LINE.detected = False
RIGHT_LINE.detected = True
if (not left_sane and not right_sane) or not sanity_check_both(ploty, left_fit, right_fit, left_fitx, right_fitx, LEFT_LINE, RIGHT_LINE):
# # Perform sliding window to detect line
# out_img, ploty, left_fit, right_fit, left_fitx, right_fitx = sliding_window(image)
left_fit = LEFT_LINE.recent_fit[-1]
right_fit = RIGHT_LINE.recent_fit[-1]
left_fitx = LEFT_LINE.recent_xfit[-1]
right_fitx = RIGHT_LINE.recent_xfit[-1]
LEFT_LINE.detected = False
RIGHT_LINE.detected = False
else:
LEFT_LINE.detected = True
RIGHT_LINE.detected = True
# Update the line objects
if len(LEFT_LINE.recent_xfit) == LEFT_LINE.n:
LEFT_LINE.recent_xfit.pop(0)
LEFT_LINE.recent_xfit.append(left_fitx)
if len(LEFT_LINE.recent_fit) == LEFT_LINE.n:
LEFT_LINE.recent_fit.pop(0)
LEFT_LINE.recent_fit.append(left_fit)
if len(RIGHT_LINE.recent_xfit) == RIGHT_LINE.n:
RIGHT_LINE.recent_xfit.pop(0)
RIGHT_LINE.recent_xfit.append(right_fitx)
if len(RIGHT_LINE.recent_fit) == RIGHT_LINE.n:
RIGHT_LINE.recent_fit.pop(0)
RIGHT_LINE.recent_fit.append(right_fit)
# # Draw the polynomial coefficients
# font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(out_img,'Left A=' + '{0:.5f}'.format(left_fit[0]), (50,70), font, 1, (255,255,255),1,cv2.LINE_AA)
# cv2.putText(out_img,'Left B=' + '{0:.5f}'.format(left_fit[1]), (50,120), font, 1, (255,255,255),1,cv2.LINE_AA)
# cv2.putText(out_img,'Left C=' + '{0:.5f}'.format(left_fit[2]), (50,170), font, 1, (255,255,255),1,cv2.LINE_AA)
# cv2.putText(out_img,'Right A=' + '{0:.5f}'.format(right_fit[0]), (50,220), font, 1, (255,255,255),1,cv2.LINE_AA)
# cv2.putText(out_img,'Right B=' + '{0:.5f}'.format(right_fit[1]), (50,270), font, 1, (255,255,255),1,cv2.LINE_AA)
# cv2.putText(out_img,'Right C=' + '{0:.5f}'.format(right_fit[2]), (50,320), font, 1, (255,255,255),1,cv2.LINE_AA)
return draw_calculate(out_img, ploty, left_fitx, right_fitx)
# Define a class to receive the characteristics of each line detection
class Line():
def __init__(self):
# number of history data
self.n = 5
# was the line detected in the last iteration?
self.detected = False
#x values for detected line pixels
#self.allx = None
#y values for detected line pixels
#self.ally = None
# x values of the last n fits of the line
self.recent_xfit = []
#polynomial coefficients of the last n fits of the line
self.recent_fit = []
#difference in polynomial coefficients between last and new fits
#self.diffs = np.array([0,0,0], dtype='float')
#radius of curvature of the line in some units
#self.radius_of_curvature = None
#distance in meters of vehicle center from the line
#self.line_base_pos = None
def draw_detection(undist, warped, Minv, ploty, left_fitx, right_fitx, radius_of_curvature, car_pos):
# Create an image to draw the lines on
warp_zero = np.zeros_like(warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
# left_fitx = left_fitx[50:]
# right_fitx = right_fitx[50:]
# ploty = ploty[50:]
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
# Draw the radius of curvature
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(result,'Radius of Curvature = ' + '{0:.1f}'.format(radius_of_curvature) + 'm', (50,70), font, 2, (255,255,255),2,cv2.LINE_AA)
# Draw the car position
cv2.putText(result,'Vehicle is ' + '{0:.1f}'.format(abs(car_pos)) + 'm ' + ('left' if car_pos < 0 else 'right') + ' of center',(50,140), font, 2, (255,255,255),2,cv2.LINE_AA)
return result
def detect_lane(image, image_path=None):
# Undistort the image
dst = cv2.undistort(image, mtx, dist, None, mtx)
if image_path is not None:
save_image(cv2.cvtColor(dst, cv2.COLOR_RGB2BGR), image_path, 'undistorted')
# Do binary thresholding to the image
bin_thresh = binary_threshold(dst, S_THRESHOLD, SX_THRESHOLD)
if image_path is not None:
save_image(bin_thresh, image_path, 'binary_threshold')
# Perspective transform into a bird's eye view
persp_trans = cv2.warpPerspective(bin_thresh, M, (bin_thresh.shape[1],dst.shape[0]), flags=cv2.INTER_LINEAR)
if image_path is not None:
save_image(persp_trans, image_path, 'perspective_transform')
# Find lines
detected_lines, ploty, left_fitx, right_fitx, radius_of_curvature, car_pos = find_lines(persp_trans)
if image_path is not None:
save_image(detected_lines, image_path, 'detected_lines')
# Draw the detected lines, lane, radius of curvature, car position into the undistorted image
drawn_image = draw_detection(dst, persp_trans, Minv, ploty, left_fitx, right_fitx, radius_of_curvature, car_pos)
if image_path is not None:
save_image(cv2.cvtColor(drawn_image, cv2.COLOR_RGB2BGR), image_path, 'drawn_image')
return drawn_image
if __name__ == '__main__':
# # calibrate camera
# calibrate_camera()
# Load the camera calibration coefficients
with open('camera_calibration.pickle', 'rb') as pickle_file:
camera_calibration = pickle.load(pickle_file)
mtx = camera_calibration["mtx"]
dist = camera_calibration["dist"]
# get the perspective transform matrix
left_point = 640 - ((640-TRANSFORM_SRC_POINT[2][0])*TRANSFORM_DEST_RATIO)
right_point = 640 + ((TRANSFORM_SRC_POINT[3][0]-640)*TRANSFORM_DEST_RATIO)
TRANSFORM_DEST_POINT = np.float32([[left_point,0],[right_point,0],[left_point,719],[right_point,719]])
M = cv2.getPerspectiveTransform(TRANSFORM_SRC_POINT, TRANSFORM_DEST_POINT)
Minv = cv2.getPerspectiveTransform(TRANSFORM_DEST_POINT, TRANSFORM_SRC_POINT)
# # process test images
# test_images = list(map(lambda s: 'test_images/' + s, os.listdir('test_images/')))
# for image_path in test_images:
# # Read the image
# image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
# # Run the image through the pipeline
# detected_lane_image = detect_lane(image, image_path)
# left_fit = None
# right_fit = None
# # Save the image
# cv2.imwrite(image_path.replace('test_images','test_images_output').replace('.jpg', '')+'_detected.jpg', cv2.cvtColor(detected_lane_image, cv2.COLOR_RGB2BGR))
# # process test video(s)
# video = VideoFileClip("project_video.mp4")
# #video.save_frame("frame.jpg", t=21.2) # saves the frame a t=2s
# detected_lane_video = video.fl_image(detect_lane) #NOTE: this function expects color images!!
# detected_lane_video.write_videofile("project_video_detected.mp4", audio=False)
img_path = 'test_images/test2.jpg'
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
detect_lane(img, img_path)
img_path = 'test_images/test2.jpg'
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
detect_lane(img, img_path)