-
Notifications
You must be signed in to change notification settings - Fork 48
/
chatapp.py
116 lines (81 loc) Β· 3.76 KB
/
chatapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
# os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=50000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.set_page_config("Multi PDF Chatbot", page_icon = ":scroll:")
st.header("Multi-PDF's π - Chat Agent π€ ")
user_question = st.text_input("Ask a Question from the PDF Files uploaded .. βοΈπ")
if user_question:
user_input(user_question)
with st.sidebar:
st.image("img/Robot.jpg")
st.write("---")
st.title("π PDF File's Section")
pdf_docs = st.file_uploader("Upload your PDF Files & \n Click on the Submit & Process Button ", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."): # user friendly message.
raw_text = get_pdf_text(pdf_docs) # get the pdf text
text_chunks = get_text_chunks(raw_text) # get the text chunks
get_vector_store(text_chunks) # create vector store
st.success("Done")
st.write("---")
st.image("img/gkj.jpg")
st.write("AI App created by @ Gurpreet Kaur") # add this line to display the image
st.markdown(
"""
<div style="position: fixed; bottom: 0; left: 0; width: 100%; background-color: #0E1117; padding: 15px; text-align: center;">
Β© <a href="https://github.com/gurpreetkaurjethra" target="_blank">Gurpreet Kaur Jethra</a> | Made with β€οΈ
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()