|
| 1 | +""" |
| 2 | +Plotting focal mechanisms |
| 3 | +========================= |
| 4 | +
|
| 5 | +Focal mechanisms can be plotted as beachballs with the :meth:`pygmt.Figure.meca` method. |
| 6 | +
|
| 7 | +The focal mechanism data or parameters can be provided as various input types: ASCII |
| 8 | +file, :class:`numpy.array`, dictionary, or :class:`pandas.Dataframe`. Different |
| 9 | +conventions to define the focal mechanism are supported: Aki and Richards (``"aki"``), |
| 10 | +global CMT (``"gcmt"``), moment tensor (``"mt"``), partial focal mechanism |
| 11 | +(``"partial"``), and, principal axis (``"principal_axis"``). Please refer to the table |
| 12 | +in the documentation of :meth:`pygmt.Figure.meca` regarding how to set up the input data |
| 13 | +in respect to the chosen input type and convention (i.e., the expected column order, |
| 14 | +keys, or column names). In this tutorial we focus on how to adjust the display of the |
| 15 | +beachballs. |
| 16 | +""" |
| 17 | + |
| 18 | +# %% |
| 19 | +import pandas as pd |
| 20 | +import pygmt |
| 21 | + |
| 22 | +# Set up arguments for basemap |
| 23 | +region = [-5, 5, -5, 5] |
| 24 | +projection = "X10c/4c" |
| 25 | +frame = ["af", "+ggray90"] |
| 26 | + |
| 27 | + |
| 28 | +# %% |
| 29 | +# Setting up the focal mechanism data |
| 30 | +# ----------------------------------- |
| 31 | +# |
| 32 | +# We store focal mechanism parameters for two single events in dictionaries using the |
| 33 | +# moment tensor and Aki and Richards conventions: |
| 34 | + |
| 35 | +# moment tensor convention |
| 36 | +mt_single = { |
| 37 | + "mrr": 4.71, |
| 38 | + "mtt": 0.0381, |
| 39 | + "mff": -4.74, |
| 40 | + "mrt": 0.399, |
| 41 | + "mrf": -0.805, |
| 42 | + "mtf": -1.23, |
| 43 | + "exponent": 24, |
| 44 | +} |
| 45 | +# Aki and Richards convention |
| 46 | +aki_single = {"strike": 318, "dip": 89, "rake": -179, "magnitude": 7.75} |
| 47 | + |
| 48 | + |
| 49 | +# %% |
| 50 | +# Plotting a single beachball |
| 51 | +# --------------------------- |
| 52 | +# |
| 53 | +# Required parameters are ``spec`` and ``scale`` as well as ``longitude``, ``latitude`` |
| 54 | +# (event location), and depth (if these values are not included in the argument passed |
| 55 | +# to ``spec``). Additionally, the ``convention`` parameter is required if ``spec`` is |
| 56 | +# an 1-D or 2-D numpy array; for the input types dictionary and ``pandas.Dataframe``, |
| 57 | +# the focal mechanism convention is automatically determined from dictionary keys or |
| 58 | +# :class:`pandas.DataFrame` column names. The ``scale`` parameter controls the radius |
| 59 | +# of the beachball. By default, the value defines the size for a magnitude of 5 (i.e., |
| 60 | +# a scalar seismic moment of :math:`M_0 = 4.0 \times 10^{23}` dyn cm) and the beachball |
| 61 | +# size is proportional to the magnitude. Append ``"+l"`` to force the radius to be |
| 62 | +# proportional to the seismic moment. |
| 63 | + |
| 64 | +fig = pygmt.Figure() |
| 65 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 66 | + |
| 67 | +fig.meca(spec=mt_single, scale="1c", longitude=0, latitude=0, depth=0) |
| 68 | + |
| 69 | +fig.show() |
| 70 | + |
| 71 | + |
| 72 | +# %% |
| 73 | +# Plotting the components of a seismic moment tensor |
| 74 | +# -------------------------------------------------- |
| 75 | +# |
| 76 | +# A moment tensor can be decomposed into isotropic and deviatoric parts. The deviatoric |
| 77 | +# part can be further decomposed into multiple parts (e.g., a double couple (DC) and a |
| 78 | +# compensated linear vector dipole (CLVD)). Use the ``component`` parameter to specify |
| 79 | +# the component you want to plot. |
| 80 | + |
| 81 | +fig = pygmt.Figure() |
| 82 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 83 | + |
| 84 | +for component, longitude in zip(["full", "dc", "deviatoric"], [-2, 0, 2], strict=True): |
| 85 | + fig.meca( |
| 86 | + spec=mt_single, |
| 87 | + scale="1c", |
| 88 | + longitude=longitude, |
| 89 | + latitude=0, |
| 90 | + depth=0, |
| 91 | + component=component, |
| 92 | + ) |
| 93 | + |
| 94 | +fig.show() |
| 95 | + |
| 96 | + |
| 97 | +# %% |
| 98 | +# Filling the quadrants |
| 99 | +# --------------------- |
| 100 | +# |
| 101 | +# Use the parameters ``compressionfill`` and ``extensionfill`` to fill the quadrants |
| 102 | +# with different colors or patterns. Regarding patterns see the gallery example |
| 103 | +# :doc:`Bit and hachure patterns </gallery/symbols/patterns>` and the Technical |
| 104 | +# Reference :doc:`Bit and hachure patterns </techref/patterns>`. |
| 105 | + |
| 106 | +fig = pygmt.Figure() |
| 107 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 108 | + |
| 109 | +fig.meca( |
| 110 | + spec=mt_single, |
| 111 | + scale="1c", |
| 112 | + longitude=-2, |
| 113 | + latitude=0, |
| 114 | + depth=0, |
| 115 | + compressionfill="darkorange", |
| 116 | + extensionfill="cornsilk", |
| 117 | +) |
| 118 | + |
| 119 | +fig.meca( |
| 120 | + spec=mt_single, |
| 121 | + scale="1c", |
| 122 | + longitude=2, |
| 123 | + latitude=0, |
| 124 | + depth=0, |
| 125 | + compressionfill="p8", |
| 126 | + extensionfill="p31", |
| 127 | + outline=True, |
| 128 | +) |
| 129 | + |
| 130 | +fig.show() |
| 131 | + |
| 132 | + |
| 133 | +# %% |
| 134 | +# Adjusting the outlines |
| 135 | +# ---------------------- |
| 136 | +# |
| 137 | +# Use the parameters ``pen`` and ``outline`` for adjusting the circumference of the |
| 138 | +# beachball or all lines (i.e, circumference and both nodal planes). |
| 139 | + |
| 140 | +fig = pygmt.Figure() |
| 141 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 142 | + |
| 143 | +fig.meca( |
| 144 | + spec=aki_single, |
| 145 | + scale="1c", |
| 146 | + longitude=-2, |
| 147 | + latitude=0, |
| 148 | + depth=0, |
| 149 | + # Use a 1-point thick, darkorange and solid line |
| 150 | + pen="1p,darkorange", |
| 151 | +) |
| 152 | + |
| 153 | +fig.meca( |
| 154 | + spec=aki_single, |
| 155 | + scale="1c", |
| 156 | + longitude=2, |
| 157 | + latitude=0, |
| 158 | + depth=0, |
| 159 | + outline="1p,darkorange", |
| 160 | +) |
| 161 | + |
| 162 | +fig.show() |
| 163 | + |
| 164 | + |
| 165 | +# %% |
| 166 | +# Highlighting the nodal planes |
| 167 | +# ----------------------------- |
| 168 | +# |
| 169 | +# Use the parameter ``nodal`` to highlight specific nodal planes. ``"0"`` refers to |
| 170 | +# both, ``"1"`` to the first, and ``"2"`` to the second nodal plane(s). Only the |
| 171 | +# circumference and the specified nodal plane(s) are plotted, i.e. the quadrants |
| 172 | +# remain unfilled (transparent). We can make use of the stacking concept of (Py)GMT, |
| 173 | +# and use ``nodal`` in combination with the ``outline``, ``compressionfill`` / |
| 174 | +# ``extensionfill`` and ``pen`` parameters. |
| 175 | + |
| 176 | +fig = pygmt.Figure() |
| 177 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 178 | + |
| 179 | +fig.meca( |
| 180 | + spec=aki_single, |
| 181 | + scale="1c", |
| 182 | + longitude=-2, |
| 183 | + latitude=0, |
| 184 | + depth=0, |
| 185 | + nodal="0/1p,black", |
| 186 | +) |
| 187 | + |
| 188 | +# Plot the same beachball three times with different settings: |
| 189 | +# (i) Fill the compressive quadrants |
| 190 | +# (ii) Plot the first nodal plane and the circumference in darkorange |
| 191 | +# (iii) Plot the circumfence in black on top; use "-" to not fill the quadrants |
| 192 | +for kwargs in [ |
| 193 | + {"compressionfill": "lightorange"}, |
| 194 | + {"nodal": "1/1p,darkorange"}, |
| 195 | + {"compressionfill": "-", "extensionfill": "-", "pen": "1p,gray30"}, |
| 196 | +]: |
| 197 | + fig.meca( |
| 198 | + spec=aki_single, |
| 199 | + scale="1c", |
| 200 | + longitude=0, |
| 201 | + latitude=0, |
| 202 | + depth=0, |
| 203 | + **kwargs, |
| 204 | + ) |
| 205 | +fig.show() |
| 206 | + |
| 207 | + |
| 208 | +# %% |
| 209 | +# Adding offset from event location |
| 210 | +# --------------------------------- |
| 211 | +# |
| 212 | +# Specify the optional parameters ``plot_longitude`` and ``plot_latitude``. If ``spec`` |
| 213 | +# is an ASCII file with columns for ``plot_longitude`` and ``plot_latitude``, the |
| 214 | +# ``offset`` parameter has to be set to ``True``. Besides just drawing a line between |
| 215 | +# the beachball and the event location, a small circle can be plotted at the event |
| 216 | +# location by appending **+s** and the descired circle diameter. The connecting line as |
| 217 | +# well as the outline of the circle are plotted with the setting of pen, or can be |
| 218 | +# adjusted separately. The fill of the small circle corresponds to the fill of the |
| 219 | +# compressive quadrantes. |
| 220 | + |
| 221 | +fig = pygmt.Figure() |
| 222 | +fig.basemap(region=region, projection=projection, frame=frame) |
| 223 | + |
| 224 | +fig.meca( |
| 225 | + spec=aki_single, |
| 226 | + scale="1c", |
| 227 | + longitude=-1, |
| 228 | + latitude=0, |
| 229 | + depth=0, |
| 230 | + plot_longitude=-3, |
| 231 | + plot_latitude=2, |
| 232 | +) |
| 233 | + |
| 234 | +fig.meca( |
| 235 | + spec=aki_single, |
| 236 | + scale="1c", |
| 237 | + longitude=3, |
| 238 | + latitude=0, |
| 239 | + depth=0, |
| 240 | + plot_longitude=1, |
| 241 | + plot_latitude=2, |
| 242 | + offset="+p1p,darkorange+s0.25c", |
| 243 | + compressionfill="lightorange", |
| 244 | +) |
| 245 | + |
| 246 | +fig.show() |
| 247 | + |
| 248 | + |
| 249 | +# %% |
| 250 | +# Plotting multiple beachballs |
| 251 | +# ---------------------------- |
| 252 | +# |
| 253 | +# Now we want to plot multiple beachballs with one call of :meth:`pygmt.Figure.meca`. We |
| 254 | +# use data of four earthquakes taken from USGS. For each focal mechanism parameter a |
| 255 | +# list with a length corresponding to the number of events has to be given. |
| 256 | + |
| 257 | +# Set up a pandas.DataFrame with multiple focal mechanism parameters. |
| 258 | +aki_multiple = pd.DataFrame( |
| 259 | + { |
| 260 | + "strike": [255, 173, 295, 318], |
| 261 | + "dip": [70, 68, 79, 89], |
| 262 | + "rake": [20, 83, -177, -179], |
| 263 | + "magnitude": [7.0, 5.8, 6.0, 7.8], |
| 264 | + "longitude": [-72.53, -79.61, 69.46, 37.01], |
| 265 | + "latitude": [18.44, 0.90, 33.02, 37.23], |
| 266 | + "depth": [13, 19, 4, 10], |
| 267 | + "plot_longitude": [-70, -110, 100, 0], |
| 268 | + "plot_latitude": [40, 10, 50, 55], |
| 269 | + "event_name": [ |
| 270 | + "Haiti - 2010/01/12", |
| 271 | + "Esmeraldas - 2022/03/27", |
| 272 | + "Afghanistan - 2022/06/21", |
| 273 | + "Syria/Turkey - 2023/02/06", |
| 274 | + ], |
| 275 | + } |
| 276 | +) |
| 277 | + |
| 278 | + |
| 279 | +# %% |
| 280 | +# Adding a label |
| 281 | +# -------------- |
| 282 | +# |
| 283 | +# Use the optional parameter ``event_name`` to add a label near the beachball, e.g., |
| 284 | +# event name or event date and time. Change the font of the label text by appending |
| 285 | +# **+f** and the desired font (size,name,color) to the argument passed to the ``scale`` |
| 286 | +# parameter. Additionally, the location of the label relative to the beachball [Default |
| 287 | +# is ``"TC"``, i.e., Top Center] can be changed by appending **+j** and an offset can |
| 288 | +# be applied by appending **+o** with values for *dx*\ /*dy*. Add a colored [Default is |
| 289 | +# white] box behind the label via the label ``labelbox``. Force a fixed size of the |
| 290 | +# beachball by appending **+m** to the argument passed to the ``scale`` parameter. |
| 291 | + |
| 292 | +fig = pygmt.Figure() |
| 293 | +fig.coast(region="d", projection="N10c", land="lightgray", frame=True) |
| 294 | + |
| 295 | +fig.meca(spec=aki_multiple, scale="0.4c+m+f5p", labelbox="white@30", offset="+s0.1c") |
| 296 | + |
| 297 | +fig.show() |
| 298 | + |
| 299 | + |
| 300 | +# %% |
| 301 | +# Using size-coding and color-coding |
| 302 | +# ---------------------------------- |
| 303 | +# |
| 304 | +# The beachball can be sized and colored by the quantities given as ``magnitude`` and |
| 305 | +# ``depth``, e.g., by moment magnitude or hypocentral depth, respectively. Use the |
| 306 | +# parameter ``cmap`` to pass the descired colormap. Now, the fills of the small circles |
| 307 | +# indicating the event locations are given by the colormap. |
| 308 | + |
| 309 | +fig = pygmt.Figure() |
| 310 | +fig.coast(region="d", projection="N10c", land="lightgray", frame=True) |
| 311 | + |
| 312 | +# Set up colormap and colorbar for hypocentral depth |
| 313 | +pygmt.makecpt(cmap="lajolla", series=[0, 20]) |
| 314 | +fig.colorbar(frame=["x+lhypocentral depth", "y+lkm"]) |
| 315 | + |
| 316 | +fig.meca( |
| 317 | + spec=aki_multiple, |
| 318 | + scale="0.4c+f5p", |
| 319 | + offset="0.2p,gray30+s0.1c", |
| 320 | + labelbox="white@30", |
| 321 | + cmap=True, |
| 322 | + outline="0.2p,gray30", |
| 323 | +) |
| 324 | + |
| 325 | +fig.show() |
| 326 | + |
| 327 | +# sphinx_gallery_thumbnail_number = 8 |
0 commit comments