This repository has been archived by the owner on Dec 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 855
/
data_utils.py
43 lines (36 loc) · 1.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the \"License\");
# you may not use this file except in compliance with the License.\n",
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an \"AS IS\" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
from google.cloud import storage
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
def load_data(args):
"""Loads the data"""
features = pd.read_csv('./sonar.all-data', header=None)
labels = features[60].values
features = features.drop(columns=60).values
label_encoder = preprocessing.LabelEncoder()
label_encoder.fit(labels)
labels = label_encoder.transform(labels)
train_f, test_f, train_l, test_l = train_test_split(
features, labels, test_size=args.test_split, random_state=args.seed)
return train_f, test_f, train_l, test_l
def save_model(model_dir, model_name):
"""Saves the model to Google Cloud Storage"""
bucket = storage.Client().bucket(model_dir)
blob = bucket.blob('{}/{}'.format(
datetime.datetime.now().strftime('sonar_%Y%m%d_%H%M%S'),
model_name))
blob.upload_from_filename(model_name)