-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
48 lines (40 loc) · 1.55 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from pathlib import Path
import hydra
from datetime import datetime
from omegaconf import OmegaConf, open_dict
import wandb
from common import load_utils
from common.misc import rgetattr
from trainer.build import build_trainer
@hydra.main(version_base=None, config_path="./configs", config_name="default")
def main(cfg: OmegaConf) -> None:
if cfg.resume:
assert Path(cfg.exp_dir).exists(), f"Resuming failed: {cfg.exp_dir} does not exist."
print(f"Resuming from {cfg.exp_dir}")
cfg = OmegaConf.load(Path(cfg.exp_dir) / 'config.yaml')
cfg.resume = True
else:
run_id = wandb.util.generate_id()
with open_dict(cfg):
cfg.logger.run_id = run_id
naming_keys = []
for name in cfg.get('naming_keywords', []):
if name == 'time':
continue
if name == 'task':
task_name = cfg.task.name
naming_keys.append(task_name)
datasets = rgetattr(cfg, f"task.{task_name}.train")
dataset_names = "+".join([str(x) for x in datasets])
naming_keys.append(dataset_names)
exp_name = "_".join(naming_keys)
if not cfg.exp_dir:
cfg.exp_dir = Path(cfg.base_dir) / 'runs' / exp_name / f"{datetime.now().strftime('%Y-%m-%d-%H:%M:%S.%f')}"
load_utils.make_dir(cfg.exp_dir)
OmegaConf.save(cfg, cfg.exp_dir / "config.yaml")
trainer = build_trainer(cfg)
trainer.run()
if __name__ == "__main__":
import torch
torch.multiprocessing.set_start_method('spawn')# good solution !!!!
main()