Skip to content

Latest commit

 

History

History
123 lines (100 loc) · 6.03 KB

README.md

File metadata and controls

123 lines (100 loc) · 6.03 KB

GPUgo

GPUgo is a Python module for getting the GPU status from NVIDA GPUs using nvidia-smi. GPUgo would give all your sever's gpu information. Besides, GPUgo can assign deep learning tasks to GPU according remaining GPU free memory automatically and run these tasks parallelly without artificial specified GPU. This will save lots of time. If you are a student with limited GPU resources, it's best for you.

Table of Contents

  1. Backgroud
  2. Requirements
  3. Installation
  4. Usage
    1. show gpu information
    2. kill all process on specific device by one command
    3. run dl tasks parallelly
  5. License

Background

During the experiment of deep learning, I have to run each task for different backbone many times. At first, I just write them into a script and run it. But this will last a long time even if I have powerful GPU devices. So then I start to think about how to run the experiment faster. Then I write this library GPUgo to execute tasks in parallel. GPUgo calculate each task's memory by pre-running in limited time. Then GPUgo will assign tasks to diferent GPU device by memory's ascending order. After GPUgo get the order, it will start mutil processes to run these task simultaneously.

Requirements

NVIDIA GPU with latest NVIDIA driver installed. gpugo uses the program nvidia-smi to get the GPU status of all available NVIDIA GPUs. nvidia-smi should be installed automatically, when you install your NVIDIA driver.

For now, GPUgo only support python3.6 or higher on unbuntu.

Tested on CUDA driver version 418.39 and python 3.7.

Installation

Clone this repository:

git clone  --recursive https://github.com/wuchangsheng951/gpugo.git
cd gpugo
pip install -r requirements
python setup.py install 

Usage

show gpu information

show GPU device's information like nvidia-smi

$~ gas

Your output should look something like following, depending on your number of GPUs and their current usage:

=============================================================================================================================
device_type device_id utilizationGPU(%)  memoryTotal(MB)  memoryUsed(MB)  memoryFree(MB)  memoryusedPercent(%) task_num
Quadro P6000         0                 0          24446.0           110.0         24336.0              0.004500        0
    TITAN Xp         1                 0          12196.0             2.0         12194.0              0.000164        0


-----------------------------------------------------------------------------------------------------------------------------
there is no task on any device !
None
=============================================================================================================================

kill all process on specific device by one command

gas -k [device_id]

run dl tasks in parallel

the script to execute like this.

python train_proposed.py --model alexnet --Augmentation True 
python train_proposed.py --model vgg16  --Augmentation True 
python train_proposed.py --model resnet50 --Augmentation True 
python train_proposed.py --model alexnet  --Augmentation False  
python train_proposed.py --model resnet50  --Augmentation False 
python train_proposed.py --model resnet50  --Augmentation False 

You're going to execute these tasks in parallel.

#This method will run several tasks at the same time.
#Make sure your script is under right conda environment
$~ gas -f [script path for script]

Parameters

  • -f the path for script to execute. Required
  • -t the duration execution time to estimate task's used of memory.(default 15s)
  • -n running max task number on each device (default 3)
  • -d select specific device to run tasks.

note : GPUgo calculates every task's used memory by start it and keep it running for a while.

+-----------------------------------------------------------------------------+
Sat Jul  4 17:04:26 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.39       Driver Version: 418.39       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro P6000        Off  | 00000000:0A:00.0  On |                  Off |
| 46%   80C    P0   187W / 250W |  16289MiB / 24446MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN Xp            Off  | 00000000:0B:00.0 Off |                  N/A |
| 33%   63C    P2   254W / 250W |   5343MiB / 12196MiB |     99%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1155      G   /usr/lib/xorg/Xorg                           107MiB |
|    0     11571      C   python                                      2753MiB |
|    0     11572      C   python                                      2753MiB |
|    0     11574      C   python                                      5331MiB |
|    0     11575      C   python                                      5331MiB |
|    1     11576      C   python                                      5331MiB |
+-----------------------------------------------------------------------------+

LICENSE

See LICENSE