forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasset-class-momentum-rotational-system.py
55 lines (44 loc) · 1.65 KB
/
asset-class-momentum-rotational-system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# region imports
from AlgorithmImports import *
# endregion
# https://quantpedia.com/strategies/asset-class-momentum-rotational-system/
#
# Use 5 ETFs (SPY - US stocks, EFA - foreign stocks, IEF - bonds, VNQ - REITs, GSG - commodities).
# Pick 3 ETFs with strongest 12 month momentum into your portfolio and weight them equally.
# Hold for 1 month and then rebalance.
class MomentumAssetAllocationStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.data = {}
period = 12 * 21
self.SetWarmUp(period)
self.symbols = ["SPY", "EFA", "IEF", "VNQ", "GSG"]
for symbol in self.symbols:
self.AddEquity(symbol, Resolution.Daily)
self.data[symbol] = self.ROC(symbol, period, Resolution.Daily)
self.recent_month = -1
def OnData(self, data):
if self.IsWarmingUp:
return
# monthly rebalance
if self.Time.month == self.recent_month:
return
self.recent_month = self.Time.month
sorted_by_momentum = sorted(
[
x
for x in self.data.items()
if x[1].IsReady and x[0] in data and data[x[0]]
],
key=lambda x: x[1].Current.Value,
reverse=True,
)
count = 3
long = [x[0] for x in sorted_by_momentum][:count]
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))