diff --git a/src/main.py b/src/main.py index 7436090..fbf8046 100644 --- a/src/main.py +++ b/src/main.py @@ -1,3 +1,4 @@ +``` import numpy as np import tensorflow as tf from sklearn.decomposition import PCA @@ -29,81 +30,15 @@ def machine_learning_model(): tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(16, activation='relu'), - tf.keras.layers.Dense(16, activation='relu'), - tf.keras.layers.Dense(8, activation='relu'), - tf.keras.layers.Dense(8, activation='relu'), - tf.keras.layers.Dense(4, activation='relu'), - tf.keras.layers.Dense(4, activation='relu'), - tf.keras.layers.Dense(2, activation='relu'), - tf.keras.layers.Dense(2, activation='relu'), - tf.keras.layers.Dense(1, activation='relu'), - tf.keras.layers.Dense(1, activation='relu'), - tf.keras.layers.Dense(1, activation='relu'), - tf.keras.layers.Dense(1, activation='relu'), - tf.keras.layers.Dense(1, activation='sigmoid') - ]) - model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) - return model - -def nlp_model(): - model = tf.keras.Sequential([ - tf.keras.layers.Embedding(input_dim=10000, output_dim=64), - tf.keras.layers.LSTM(256, return_sequences=True), - tf.keras.layers.LSTM(256, return_sequences=True), - tf.keras.layers.LSTM(128, return_sequences=True), - tf.keras.layers.LSTM(128, return_sequences=True), - tf.keras.layers.LSTM(64, return_sequences=True), - tf.keras.layers.LSTM(64, return_sequences=True), - tf.keras.layers.LSTM(32, return_sequences=True), - tf.keras.layers.LSTM(32, return_sequences=True), - tf.keras.layers.LSTM(16, return_sequences=True), - tf.keras.layers.LSTM(16, return_sequences=True), - tf.keras.layers.LSTM(8, return_sequences=True), - tf.keras.layers.LSTM(8, return_sequences=True), - tf.keras.layers.LSTM(4, return_sequences=True), - tf.keras.layers.LSTM(4, return_sequences=True), - tf.keras.layers.LSTM(2, return_sequences=True), - tf.keras.layers.LSTM(2, return_sequences=True), - tf.keras.layers.LSTM(1, return_sequences=True), - tf.keras.layers.LSTM(1, return_sequences=True), - tf.keras.layers.LSTM(1), - tf.keras.layers.Dense(1, activation='sigmoid') + tf.keras.layers.Dense(16, activation='relu') ]) - model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model def quantum_error_correction(): - def encode(bit): - return [bit, bit, bit] - - def decode(bits): - return 1 if sum(bits) > 1 else 0 - - original_bit = 1 - encoded_bits = encode(original_bit) - noisy_bits = [1, 0, 1] - corrected_bit = decode(noisy_bits) - return corrected_bit + # implement quantum error correction logic here + pass def omnificient_ping(): - ping_result = "Omnificient ping executed successfully." - return ping_result - -def main(): - geometry_result = sacred_geometry_369() - chamber_result = resonant_chamber() - circuit_result = doubling_circuit() - ml_model = machine_learning_model() - nlp_model_instance = nlp_model() - qec_result = quantum_error_correction() - ping_result = omnificient_ping() - - print(f"Sacred Geometry 369 Result: {geometry_result}") - print(f"Resonant Chamber Result: {chamber_result}") - print(f"Doubling Circuit Result: {circuit_result}") - print(f"Quantum Error Correction Result: {qec_result}") - print(f"Omnificient Ping Result: {ping_result}") - -if __name__ == "__main__": - main() - + # implement omnificient ping logic here + pass +``` \ No newline at end of file