diff --git a/theories/WildCat/Universe.v b/theories/WildCat/Universe.v index 0344606ea74..4add82e05de 100644 --- a/theories/WildCat/Universe.v +++ b/theories/WildCat/Universe.v @@ -1,8 +1,8 @@ -Require Import Basics.Overture Basics.Tactics Basics.Equivalences Types.Equiv. -Require Import WildCat.Core. -Require Import WildCat.Equiv. +Require Import Basics.Overture Basics.Tactics Basics.Equivalences Basics.PathGroupoids. +Require Import Types.Equiv. +Require Import WildCat.Core WildCat.Equiv WildCat.NatTrans WildCat.TwoOneCat. -(** ** The category of types *) +(** ** The (1-)category of types *) Global Instance isgraph_type@{u v} : IsGraph@{v u} Type@{u} := Build_IsGraph Type@{u} (fun a b => a -> b). @@ -112,3 +112,64 @@ Proof. intros f x. by destruct (f x). Defined. + +(** ** The 2-category of types *) + +Global Instance is3graph_type : Is3Graph Type. +Proof. + intros A B f g. + apply Build_IsGraph. + intros p q. + exact (p == q). +Defined. + +Global Instance is1cat_type_hom A B : Is1Cat (A $-> B). +Proof. + repeat unshelve esplit. + - intros f g h p q x. + exact (q x @ p x). + - intros; by symmetry. + - intros f h p x. + exact (p x @@ 1). + - intros g h p x. + exact (1 @@ p x). + - intros ? ? ? ? ? ? ? ?; apply concat_p_pp. + - intros ? ? ? ?. apply concat_p1. + - intros ? ? ? ?. apply concat_1p. +Defined. + +Global Instance is1gpd_type_hom (A B : Type) : Is1Gpd (A $-> B). +Proof. + repeat unshelve esplit. + - intros ? ? ? ?; apply concat_pV. + - intros ? ? ? ?; apply concat_Vp. +Defined. + +Global Instance is1functor_cat_postcomp {A B C : Type} (g : B $-> C) + : Is1Functor (cat_postcomp A g). +Proof. + repeat unshelve esplit. + - intros ? ? ? ? p ?; exact (ap _ (p _)). + - intros ? ? ? ? ? ?; cbn; apply ap_pp. +Defined. + +Global Instance is1functor_cat_precomp {A B C : Type} (f : A $-> B) + : Is1Functor (cat_precomp C f). +Proof. + repeat unshelve esplit. + intros ? ? ? ? p ?; exact (p _). +Defined. + +Global Instance is21cat_type : Is21Cat Type. +Proof. + snrapply Build_Is21Cat. + 1-6: exact _. + - intros a b c d f g h i p x; cbn. + exact (concat_p1 _ @ ap_compose _ _ _ @ (concat_1p _)^). + - intros a b f g p x; cbn. + exact (concat_p1 _ @ ap_idmap _ @ (concat_1p _)^). + - intros a b f g p x; cbn. + exact (concat_p1 _ @ (concat_1p _)^). + - reflexivity. + - reflexivity. +Defined.