diff --git a/theories/WildCat/Monoidal.v b/theories/WildCat/Monoidal.v index 1e47b01c80..5440f3f331 100644 --- a/theories/WildCat/Monoidal.v +++ b/theories/WildCat/Monoidal.v @@ -113,8 +113,21 @@ Class HexagonIdentity {A : Type} `{HasEquivs A} Coercion hexagon_identity : HexagonIdentity >-> Funclass. Arguments hexagon_identity {A _ _ _ _ _} F {_ _}. +(** *** Hexagon identity with inverse associators *) + (** ** Monoidal Categories *) +Class HexagonIdentityInverseAssoc {A : Type} `{HasEquivs A} + (F : A -> A -> A) + `{!Is0Bifunctor F, !Is1Bifunctor F, !Associator F, !Braiding F} + (** The other hexagon identity for an associator and a braiding. *) + := hexagon_identity_inv_assoc a b c + : fmap01 F b (braid a c) $o (associator b a c)^-1$ $o fmap10 F (braid a b) c + $== (associator b c a)^-1$ $o braid a (F b c) $o (associator a b c)^-1$. + +Coercion hexagon_identity_inv_assoc : HexagonIdentityInverseAssoc >-> Funclass. +Arguments hexagon_identity_inv_assoc {A _ _ _ _ _} F {_ _}. + (** A monoidal 1-category is a 1-category with equivalences together with the following: *) Class IsMonoidal (A : Type) `{HasEquivs A} (** It has a binary operation [cat_tensor] called the tensor product. *) @@ -439,6 +452,42 @@ Definition symmetricbraiding_op' {A : Type} {F : A -> A -> A} H' : !SymmetricBraiding (A:=A^op) F} : SymmetricBraiding F := symmetricbraiding_op (A:=A^op) (F := F). + +(** Symmetric monoidal categories also satisfy the other hexagon axiom. This is very close to the hexagon axiom of the opposite monoidal category. *) +Global Instance cat_symm_tensor_hexagon_inv_assoc + {A : Type} {F : A -> A -> A} {unit : A} + `{IsSymmetricMonoidal A F unit} + : HexagonIdentityInverseAssoc F. +Proof. + intros a b c. + snrefine (_ $@ ((_ $@L _) $@R _)). + 2: exact ((braide _ _)^-1$). + 2: { nrapply cate_moveR_V1. + symmetry. + nrefine ((_ $@R _) $@ _). + 1: nrapply cate_buildequiv_fun. + rapply braid_braid. } + nrefine (cat_assoc _ _ _ $@ _). + snrefine ((_ $@R _) $@ _). + { refine (emap _ _)^-1$. + rapply braide. } + { symmetry. + refine (cate_inv_adjointify _ _ _ _ $@ fmap2 _ _). + nrapply cate_inv_adjointify. } + snrefine ((_ $@L (_ $@L _)) $@ _). + { refine (emap (flip F c) _)^-1$. + rapply braide. } + { symmetry. + refine (cate_inv_adjointify _ _ _ _ $@ fmap2 _ _). + nrapply cate_inv_adjointify. } + nrefine (_ $@ cat_assoc_opp _ _ _). + refine ((_ $@L _)^$ $@ _^$ $@ cate_inv2 _ $@ _ $@ (_ $@L _)). + 1,2,4,5: rapply cate_inv_compose'. + refine (_ $@ (_ $@@ _) $@ _ $@ (_ $@R _)^$ $@ _^$). + 1-3,5-6: rapply cate_buildequiv_fun. + refine ((fmap02 _ _ _ $@@ ((_ $@ fmap20 _ _ _) $@R _)) $@ cat_symm_tensor_hexagon a b c $@ ((_ $@L _^$) $@R _)). + 1-4: nrapply cate_buildequiv_fun. +Defined. (** ** Opposite Monoidal Categories *) @@ -479,31 +528,8 @@ Proof. - rapply ismonoidal_op. - rapply symmetricbraiding_op. - intros a b c; unfold op in a, b, c; simpl. - snrefine (_ $@ (_ $@L (_ $@R _))). - 2: exact ((braide _ _)^-1$). - 2: { nrapply cate_moveR_V1. - symmetry. - nrefine ((_ $@R _) $@ _). - 1: nrapply cate_buildequiv_fun. - rapply braid_braid. } - snrefine ((_ $@R _) $@ _). - { refine (emap _ _)^-1$. - rapply braide. } - { symmetry. - refine (cate_inv_adjointify _ _ _ _ $@ fmap2 _ _). - nrapply cate_inv_adjointify. } - snrefine ((_ $@L (_ $@L _)) $@ _). - { refine (emap (flip tensor c) _)^-1$. - rapply braide. } - { symmetry. - refine (cate_inv_adjointify _ _ _ _ $@ fmap2 _ _). - nrapply cate_inv_adjointify. } - refine ((_ $@L _)^$ $@ _^$ $@ cate_inv2 _ $@ _ $@ (_ $@L _)). - 1,2,4,5: rapply cate_inv_compose'. - refine (_ $@ (_ $@@ _) $@ _ $@ (_ $@R _)^$ $@ _^$). - 1-3,5-6: rapply cate_buildequiv_fun. - refine ((fmap02 _ _ _ $@@ ((_ $@ fmap20 _ _ _) $@R _)) $@ cat_symm_tensor_hexagon a b c $@ ((_ $@L _^$) $@R _)). - 1-4: nrapply cate_buildequiv_fun. + nrefine (cat_assoc_opp _ _ _ $@ _ $@ cat_assoc _ _ _). + nrapply cat_symm_tensor_hexagon_inv_assoc. Defined. Definition issymmetricmonoidal_op' {A : Type} (tensor : A -> A -> A) (unit : A)