forked from AlonaZharova/Activity-based_recommendations
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·134 lines (113 loc) · 4.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''
input shape for build_model and build_model_usage is calculated as follows:
build_model: len(aval_features)-1
build_model_usage : len(usage_features)-1
--> needs to be set for every household individually
--> initialized for household 5
'''
import pandas as pd
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Input, Dense, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras import optimizers
import keras_tuner as kt
from keras_tuner.engine.hyperparameters import HyperParameters
from keras_tuner import RandomSearch
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
def prob(c):
result = len([elem for elem in c if elem != 0])
if result == 0:
v = []
for i in range(len(c)):
v.append(0)
return v
else:
"""Compute probability values for each sets of scores in x."""
return c / np.sum(c, axis=0)
def list_average(list):
return sum(list)/len(list)
def build_model(hp):
model = keras.Sequential([
keras.layers.Dense(
units=hp.Int('dense_1_units', min_value=32, max_value=256, step=32),
kernel_initializer=hp.Choice('kernel_initializer1',values =['normal','he_normal']), #'zero', 'glorot_normal',
#kernel_initializer=keras.initializers.glorot_normal(seed=42),
bias_initializer='zeros',
activation=hp.Choice('activation1',values=['softmax','sigmoid']), #'relu',
input_shape=(6-1,)
),
#keras.layers.Dropout(hp.Float('dropout1',min_value = 0,max_value=0.6, step=0.2)),
#keras.layers.Dense(
# units=hp.Int('dense_2_units', min_value=32, max_value=256, step=16),
# kernel_initializer=hp.Choice('kernel_initializer2',values =['normal','zero','glorot_normal','he_normal']),
# #kernel_initializer=keras.initializers.glorot_normal(seed=42),
# bias_initializer='zeros',
# activation=hp.Choice('activation2',values=['softmax','relu','sigmoid']),
#),
#keras.layers.Dropout(hp.Float('dropout2',min_value = 0,max_value=0.6, step=0.2)),
keras.layers.Dense(1, hp.Choice('activation4',values=['softmax', 'sigmoid'])) #'relu'
])
model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-1,1e-2,1e-3,1e-4])),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
def build_model_usage(hp):
model = keras.Sequential([
keras.layers.Dense(
units=hp.Int('dense_1_units', min_value=32, max_value=256, step=16),
kernel_initializer=hp.Choice('kernel_initializer1',values =['normal','he_normal']), #'zero', 'glorot_normal'
#kernel_initializer=keras.initializers.glorot_normal(seed=42),
bias_initializer='zeros',
activation=hp.Choice('activation1',values=['softmax', 'sigmoid']), #'relu'
input_shape=(30-1,)
),
keras.layers.Dense(1, hp.Choice('activation4',values=['softmax', 'sigmoid'])) #'relu'
])
model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-1,1e-2,1e-3,1e-4])),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
def plot_dict(myDict,title,x_label,y_label,filename,line=0):
myList = myDict.items()
myList = sorted(myList)
x, y = zip(*myList)
if line is not 0:
plt.axhline(line, color='tab:orange', linestyle='dashed')
plt.plot(x, y)
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.savefig(filename)
plt.show()
def plot_dict_bar(myDict,title,x_label,y_label,filename,line=0):
myList = myDict.items()
myList = sorted(myList)
x, y = zip(*myList)
if line is not 0:
plt.axhline(line, color='tab:orange', linestyle='dashed')
plt.bar(x, y, width = 1, color = 'g')
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.grid()
plt.savefig(filename)
plt.show()
def plot_AUC(y_test,y_pred):
roc_auc = roc_auc_score(y_test, y_pred)
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.figure()
plt.plot(fpr, tpr, label='(area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
#plt.savefig('Log_ROC')
plt.show()