-
Notifications
You must be signed in to change notification settings - Fork 17
/
voigt.c
521 lines (404 loc) · 14.2 KB
/
voigt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/* ------- file: -------------------------- voigt.c -----------------
Version: rh2.0
Author: Han Uitenbroek ([email protected])
Last modified: Fri Dec 14 08:53:28 2001 --
-------------------------- ----------RH-- */
/* --- Voigt profile generators:
-- Armstrong 1967, JQSRT 7, pp. 61-88
(slow for damping parameters larger than 1.5, accurate to
6 significant figures).
-- Hui, Armstrong & Wray 1978, JQSRT 19, pp. 509-516
(same speed in whole parameter space, faster than Armstrong for
large a, otherwise comparable, only 1% accurate for larger v).
-- George Rybicki's accurate (Ref)
(accurate to at least 8 significant figures, but a factor 2
slower than Armstrong and Hui et al.).
-- David Hummer's (Ref: algorithm 363 from the collected algorithms
from CACM, and SIAM J. Num. Analysis, 7, 185 (1970))
(Speed is comparable to Rybicki's).
-- Humlicek 1982, JQSRT 27, p. 437
Relative accuracy 1.0E-04. Also calculates Faraday-Voigt
function needed in Stokes radiative transfer.
-- Lookup table.
Note: If a FORTRAN 90 compiler is available FORTRAN's builtin
complex arithmatic can be used by defining HAVE_F90 and
linking with humlicek_.f90, hui_.f90, and libf90 at the final
linking step that makes the executable.
-- -------------- */
#include <stdlib.h>
#include <math.h>
#include "rh.h"
#include "constant.h"
#include "complex.h"
#include "error.h"
#define TINY 1.0E-08
/* --- Function prototypes -- -------------- */
double VoigtArmstrong(double a, double v);
double VoigtRybicki(double a, double v);
double VoigtHui(double a, double v, double *F);
double VoigtHumlicek(double a, double v, double *F);
double VoigtK1(double a, double v);
double VoigtK2(double a, double v);
double VoigtK3(double a, double v);
#if defined(HAVE_F90)
void humlicek_(double *a, double *v, complex *W);
void hui_(complex *z, complex *W);
#else
complex Humlicek1(complex z);
complex Humlicek2(complex z);
complex Humlicek3(complex z);
complex Humlicek4(complex z);
#endif
double VoigtLookup(double a, double v);
/* --- Global variables -- -------------- */
extern char messageStr[];
/* ------- begin -------------------------- Voigt.c ----------------- */
double Voigt(double a, double v, double *F, enum VoigtAlgorithm algorithm)
{
double voigt;
switch (algorithm) {
case ARMSTRONG:
voigt = VoigtArmstrong(a, v);
break;
case RYBICKI:
voigt = VoigtRybicki(a, v);
break;
case HUI_ETAL:
voigt = VoigtHui(a, v, F);
break;
case HUMLICEK:
voigt = VoigtHumlicek(a, v, F);
break;
case LOOKUP:
voigt = VoigtLookup(a, v);
break;
default:
sprintf(messageStr, "Unregognized Voigt algorithm: %d", algorithm);
Error(ERROR_LEVEL_2, "Voigt", messageStr);
}
return voigt;
}
/* ------- end ---------------------------- Voigt.c ----------------- */
/* ------- begin -------------------------- VoigtArmstrong.c -------- */
#define NT 10
static double t[NT] =
{0.2453407083, 0.7374737285, 1.2340762153, 1.7385377121,
2.2549740020, 2.7888060584, 3.3478545673, 3.9447640401,
4.6036824495, 5.3874808900};
static double w[NT] =
{4.6224366960e-01, 2.8667550536e-01, 1.0901720602e-01,
2.4810520887e-02, 3.2437733422e-03, 2.2833863601e-04,
7.8025564785e-06, 1.0860693707e-07, 4.3993409922e-10,
2.2293936455e-13};
double VoigtArmstrong(double a, double v)
{
if (v < 0.0) v = -v;
if ((a < 1.0 && v < 4.0) || (a < 1.8/(v + 1.0)))
return VoigtK1(a, v);
else if (a < 2.5 && v < 4.0)
return VoigtK2(a, v);
else
return VoigtK3(a, v);
}
/* ------- end ---------------------------- VoigtArmstrong.c -------- */
/* ------- begin -------------------------- VoigtK1.c --------------- */
#define TWOSQRTPI 1.12837917
#define EXPMAX 70.0
#define NC 34
double VoigtK1(double a, double v)
{
static double c[NC] =
{ 0.1999999999972224, -0.1840000000029998,
0.1558399999965025, -0.1216640000043988,
0.0877081599940391, -0.0585141248086907,
0.0362157301623914, -0.0208497654398036,
0.0111960116346270, -0.56231896167109e-02,
0.26487634172265e-02, -0.11732670757704e-02,
0.4899519978088e-03, -0.1933630801528e-03,
0.722877446788e-04, -0.256555124979e-04,
0.86620736841e-05, -0.27876379719e-05,
0.8566873627e-06, -0.2518433784e-06, 0.709360221e-07,
-0.191732257e-07, 0.49801256e-08, -0.12447734e-08,
0.2997777e-09, -0.696450e-10, 0.156262e-10, -0.33897e-11,
0.7116e-12, -0.1447e-12, 0.285e-13, -0.55e-14,
0.10e-14, -0.2e-15 };
register int n;
double a2 = a*a, v2 = v*v, u1, dn01, dn02, dn, v2i, funct, an, q, g,
coef, bn01, bn02, bn, v1;
if ((v2 - a2) > EXPMAX)
u1 = 0.0;
else
u1 = exp(a2 - v2) * cos(2.0*v*a);
if (v > 5.0) {
v2i = 1.0 / v2;
dn01 = -v2i * (0.5 + v2i*(0.75 + v2i*(1.875 + v2i*(6.5625 +
v2i*(29.53125 + v2i*(1162.4218 + v2i*1055.7421))))));
dn02 = (1.0 - dn01) / (2.0 * v);
} else {
bn01 = bn02 = 0.0;
v1 = v / 5.0;
coef = 4.0 * v1*v1 - 2.0;
for (n = NC-1; n >= 0; n--) {
bn = coef*bn01 - bn02 + c[n];
bn02 = bn01;
bn01 = bn;
}
dn02 = (double) (v1*(bn - bn02));
dn01 = 1.0 - 2.0*v*dn02;
}
funct = a*dn01;
if (a > TINY) {
q = 1.0;
an = a;
for (n = 2; n <= 50; n++) {
dn = (v*dn01 + dn02) * (-2.0/n);
dn02 = dn01;
dn01 = dn;
if (n % 2) {
q = -q;
an *= a2;
g = dn * an;
funct += q*g;
if (fabs(g/funct) <= TINY) return (u1 - TWOSQRTPI*funct);
}
}
}
return (u1 - TWOSQRTPI*funct);
}
/* ------- end ---------------------------- VoigtK1.c --------------- */
/* ------- begin -------------------------- VoigtK2.c --------------- */
double VoigtK2(double a, double v)
{
register int n;
double g = 0.0, r, s, a2 = a*a;
for (n = 0; n < NT; n++) {
r = t[n] - v;
s = t[n] + v;
g += (4.0*t[n]*t[n] - 2.0) * (r*atan(r/a) + s*atan(s/a) -
0.5*a*(log(a2 + r*r) + log(a2 + s*s))) * w[n];
}
return g/PI;
}
/* ------- end ---------------------------- VoigtK2.c --------------- */
/* ------- begin -------------------------- VoigtK3.c --------------- */
double VoigtK3(double a, double v)
{
register int n;
double g = 0.0, a2 = a*a;
for (n = 0; n < NT; n++) {
g += (1.0/(SQ(v - t[n]) + a2) + 1.0/(SQ(v + t[n]) + a2)) * w[n];
}
return (a*g)/PI;
}
/* ------- end ---------------------------- VoigtK3.c --------------- */
/* ------- begin -------------------------- VoigtRybicki.c ---------- */
#define NGR 31
#define THREEPI 9.42477796076938
#define INVSQRTPI 0.564189583547756
#define C0 0.0897935610625833
#define C1 29.608813203268
/* --- Computes the Voigt function for any value of x and
any positive value of a. Adapted from original by G. Rybicki - */
double VoigtRybicki(double a, double v)
{
register int m, n;
static int initialize = TRUE;
static double c[NGR];
double a1, a2, b1, b2, e, s, t, zi, zr, voigt;
if (initialize) {
for (m = -15, n = 0; n < NGR; m++, n++)
c[n] = C0 * exp(-(m * m)/9.0);
initialize = FALSE;
}
/* --- Doppler profile (a = 0.0) -- ------------- */
if (a == 0.0)
return (double) exp(-v*v);
/* --- General case -- ------------- */
a1 = 3.0 * a;
a2 = a * a;
e = exp(-THREEPI*a);
if (a < 0.1) {
zr = 0.5 * (e + 1.0/e) * cos(THREEPI * v);
zi = 0.5 * (e - 1.0/e) * sin(THREEPI * v);
voigt = INVSQRTPI * exp(a2 - v*v) * cos(2.0 * a*v);
} else {
zr = e * cos(THREEPI * v);
zi = e * sin(THREEPI * v);
voigt = 0.0;
}
b1 = (1.0 - zr) * a * 1.5;
b2 = -zi;
s = -8.0 - 1.5*v;
t = s*s + 2.25*a2;
for (n = 0; n < NGR; n++) {
t = t + s + 0.25;
s = s + 0.5;
b1 = a1 - b1;
b2 = -b2;
if (t > 2.5e-12)
voigt += c[n] * (b1 + b2*s) / t;
else
voigt -= c[n] * a * C1;
}
return (double) voigt * SQRTPI;
}
/* ------- end ---------------------------- VoigtRybicki.c ---------- */
/* ------- begin -------------------------- VoigtHui.c -------------- */
#define NHUI 6
double VoigtHui(double a, double v, double *F)
{
#if !defined(HAVE_F90)
register int n;
static double ah[NHUI+1] =
{122.607931777104326, 214.382388694706425, 181.928533092181549,
93.155580458138441, 30.180142196210589, 5.912626209773153,
0.564189583562615};
static double bh[NHUI+1] =
{122.607931773875350, 352.730625110963558, 457.334478783897737,
348.703917719495792, 170.354001821091472, 53.992906912940207,
10.479857114260399};
complex W1 = {0.0, 0.0}, W2;
/* --- Voigt function generator using rational approximation of
the complex error function W(a - iv).
This routine is faster for large a (> 1.5)
Voigt: H(a, v) = Re[W(v + ia)]
Faraday - Voigt: 2*F(a, v) = Im[W(v + ia)]
-- -------------- */
#endif
complex z, W;
z = cmplx(a, -v);
#if defined(HAVE_F90)
/* --- If a FORTRAN 90 compiler is available then FORTRAN's intrinsic
complex arithmatic can be used. This will give a factor of
two to three improvement in speed (with the SUN compilers).
See: hui_.f90
-- -------------- */
hui_(&z, &W);
#else
/* --- C version is used otherwise -- -------------- */
W2 = z;
for (n = NHUI; n >= 0; n--) {
W1 = cmplx_mult(cmplx_addr(W1, ah[n]), z);
W2 = cmplx_mult(cmplx_addr(W2, bh[n]), z);
}
W = cmplx_div(W1, W2);
#endif
if (F != NULL) *F = W.i;
return W.r;
}
/* ------- end ---------------------------- VoigtHui.c -------------- */
/* ------- begin -------------------------- VoigtHumlicek.c --------- */
/* --- Voigt function generator using rational approximation of
the complex error function W(v + ia).
Output:
Voigt: H(a, v) = Re[W(v + ia)]
Faraday - Voigt: 2*F(a, v) = Im[W(v + ia)]
-- -------------- */
double VoigtHumlicek(double a, double v, double *F)
{
#if defined(HAVE_F90)
complex W;
/* --- If a FORTRAN 90 compiler is available then FORTRAN's intrinsic
complex arithmatic can be used. This will give a factor of
two to three improvement in speed (with the SUN compilers).
See: humlicek_.f90
-- -------------- */
humlicek_(&a, &v, &W);
#else
complex W, z = cmplx(a, -v);
double s = fabs(v) + a;
/* --- C versions are called otherwise
See: humlicek.c
-- -------------- */
if (s >= 15.0)
W = Humlicek1(z);
else if (s >= 5.5)
W = Humlicek2(z);
else if (a >= 0.195*fabs(v) - 0.176)
W = Humlicek3(z);
else
W = Humlicek4(z);
#endif
if (F != NULL) *F = W.i;
return W.r;
}
/* ------- end ---------------------------- VoigtHumlicek.c --------- */
/* ------- begin -------------------------- VoigtLookup.c ----------- */
#define TABLE_ALGORITHM RYBICKI
#define A_MIN 1.0E-05
#define A_MAX 1.0E-02
#define N_A 50
#define V_MIN_LIN 0.0
#define V_MAX_LIN 4.0
#define N_V_LIN 400
#define V_MIN_LOG V_MAX_LIN
#define V_MAX_LOG 1000.0
#define N_V_LOG 30
/* --- Compute lookup table of Voigt function when called
for the first time. With subsequent calls the lookup table is
interpolated (bi-linearly for the moment) -- -------------- */
double VoigtLookup(double a, double v)
{
const char routineName[] = "VoigtLookup";
register int n, m;
static bool_t initialize = TRUE, hunt;
static double *a_table, *v_table_lin, *v_table_log,
**table_lin, **table_log, voigt, log_a;
double da, dv;
v = fabs(v);
if (a < A_MIN || a > A_MAX || v > V_MAX_LOG) {
sprintf(messageStr,
"Arguments (%E, %E) outside domain table", a, v);
Error(WARNING, routineName, messageStr);
return Voigt(a, v, NULL, TABLE_ALGORITHM);
}
/* --- Populate the lookup tables on initialization -- ------------ */
if (initialize) {
a_table = (double *) malloc(N_A * sizeof(double));
v_table_lin = (double *) malloc(N_V_LIN * sizeof(double));
v_table_log = (double *) malloc(N_V_LOG * sizeof(double));
table_lin = matrix_double(N_A, N_V_LIN);
table_log = matrix_double(N_A, N_V_LOG);
a_table[0] = log(A_MIN);
a_table[N_A-1] = log(A_MAX);
da = (a_table[N_A-1] - a_table[0]) / (N_A - 1);
for (n = 1; n < N_A-1; n++)
a_table[n] = a_table[n-1] + da;
v_table_lin[0] = V_MIN_LIN;
v_table_lin[N_V_LIN-1] = V_MAX_LIN;
dv = (v_table_lin[N_V_LIN-1] - v_table_lin[0]) / (N_V_LIN - 1);
for (m = 1; m < N_V_LIN-1; m++)
v_table_lin[m] = v_table_lin[m-1] + dv;
v_table_log[0] = log(V_MIN_LOG);
v_table_log[N_V_LOG-1] = log(V_MAX_LOG);
dv = (v_table_log[N_V_LOG-1] - v_table_log[0]) / (N_V_LOG - 1);
for (m = 1; m < N_V_LOG-1; m++)
v_table_log[m] = v_table_log[m-1] + dv;
for (n = 0; n < N_A; n++) {
for (m = 0; m < N_V_LIN; m++) {
table_lin[n][m] = Voigt(exp(a_table[n]), v_table_lin[m],
NULL, TABLE_ALGORITHM);
}
for (m = 0; m < N_V_LOG; m++) {
table_log[n][m] = Voigt(exp(a_table[n]), exp(v_table_log[m]),
NULL, TABLE_ALGORITHM);
}
}
sprintf(messageStr, "Created Voigt lookup tables\n");
Error(MESSAGE, routineName, messageStr);
initialize = FALSE;
}
/* --- There are two domains. Interpolation is always logarithmic
in damping parameter a. For large values of Doppler frequency
v it is also logarithmic in v, otherwise it is linear in v - */
log_a = log(a);
if (v < V_MAX_LIN) {
voigt = BiLinear(N_A, a_table, log_a, N_V_LIN, v_table_lin, v,
table_lin, hunt=TRUE);
} else {
voigt = BiLinear(N_A, a_table, log_a, N_V_LOG, v_table_log, log(v),
table_log, hunt=FALSE);
}
return voigt;
}
/* ------- begin -------------------------- VoigtLookup.c ----------- */