-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTYLIE_Vehicles.py
297 lines (247 loc) · 15.1 KB
/
STYLIE_Vehicles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
"""
Created on April 12, 2024
@author: spauliuk
This script loads previously compiled results and then compiles selected results
into different visualisations of the energy service cascade.
Works together with IAMC data template and control workbook
STYLIE_ESC_Configure.xlsx
Documentation and how to available in https://github.com/IndEcol/STYLIE
"""
import os
import openpyxl
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.lines import Line2D
import numpy as np
path = 'C:\\Users\\Stefan Pauliuk\\FILES\\ARBEIT\\PROJECTS\\ODYM-RECC\\RECC_Results\\_RECC_Evaluate'
def get_esc_data_from_pandas(ps,selectI,selectR,cscenss):
# return numpay array with esc data for given indicator, region, and scenario list
pst = ps[ps['Indicator'].isin([selectI]) & ps['Region'].isin(selectR) & ps['Scenario'].isin(cscenss)] # Select the specified data and transpose them for plotting
unit = pst.iloc[0]['Unit']
Data = pst.drop(['Scenario','Indicator', 'Region', 'Unit'], axis=1).values
return Data, unit
plt.style.use('default') # set all plotting parameters to their default values
# Definitions/Specifications
CF = openpyxl.load_workbook('STYLIE_ESC_Configure.xlsx')
CS = CF['Cover'].cell(4,4).value
scen = [] # list of target scenarios
r = 1
# Move to parameter list:
while True:
if CF[CS].cell(r,1).value == 'Define ESC plot':
break
r += 1
r += 1
ctitles = []
ctypes = []
cregs = []
cscens = []
colors = [] # List with color strings
while True:
if CF[CS].cell(r,2).value is None:
break
ctitles.append(CF[CS].cell(r,2).value)
ctypes.append(CF[CS].cell(r,3).value)
cregs.append(CF[CS].cell(r,4).value)
cscens.append(CF[CS].cell(r,5).value)
colors.append(CF[CS].cell(r,11).value)
r += 1
# open data file with results
ps = pd.read_excel('IAMC_Template_RECCv2.5_SampleData.xlsx', sheet_name='Vehicles', index_col=0) # plot sheet
# determine ESC indicators and plot ESC cascades
# find ESC parameters in Res array: outer index: Ar, middle index: ti, inner indicator: scen
for c in range(0,len(ctitles)):
if ctypes[c] == 'version_2_pav': # Energy service cascade_GHG for vehicles
# get scenario list and length
if cscens[c] == 'All':
cscenss = scen
else:
cscenss = cscens[c].split(';')
nocs = len(cscenss)
selectR = [cregs[c]]
# Define data container
esc_data = np.zeros((12,46,nocs)) # 12 decoupling indices, 46 years, nocs scenarios
# EXTRACT data and convert to ESC data array
# Service
Data_pkm = np.concatenate([get_esc_data_from_pandas(ps,'Energy Service|Transportation|Passenger|Road|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_vkm = np.concatenate([get_esc_data_from_pandas(ps,'vehicle-km driven by pass. vehicles',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Population:
Data_pop = np.concatenate([get_esc_data_from_pandas(ps,'Population',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# GHG:
Data_ghg1 = np.concatenate([get_esc_data_from_pandas(ps,'Emissions|CO2|Energy|Demand|Transportation|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_ghg3 = np.concatenate([get_esc_data_from_pandas(ps,'Emissions|CO2|Energy|Supply',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_ghg4 = np.concatenate([get_esc_data_from_pandas(ps,'GHG emissions, primary material production',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Final energy:
Data_edx = np.concatenate([get_esc_data_from_pandas(ps,'Final Energy|Transportation|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Stock:
Data_pavs = np.concatenate([get_esc_data_from_pandas(ps,'In-use stock, pass. vehicles',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Inflow
Data_pavc = np.concatenate([get_esc_data_from_pandas(ps,'final consumption (use phase inflow), all drive technologies together',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Final material consumption:
Data_matm = np.concatenate([get_esc_data_from_pandas(ps,'Final consumption of materials',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Material footprint / RMI
Data_maf1 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, metal ores, system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_maf2 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, non-metallic minerals, system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_maf3 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, biomass (dry weight), system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
esc_data[0,:,:] = ((Data_ghg1 + Data_ghg3)/Data_pop).transpose()
esc_data[1,:,:] = ((Data_ghg1 + Data_ghg3)/Data_edx).transpose()
esc_data[2,:,:] = (Data_edx / Data_pavs).transpose()
esc_data[3,:,:] = (Data_pavs / Data_vkm).transpose()
esc_data[4,:,:] = (Data_matm / Data_pavc).transpose()
esc_data[5,:,:] = (Data_ghg4 / Data_matm).transpose()
esc_data[6,:,:] = (Data_ghg4 / Data_pop).transpose()
esc_data[7,:,:] = ((Data_maf1 + Data_maf2 + Data_maf3)/Data_matm).transpose()
esc_data[8,:,:] = ((Data_maf1 + Data_maf2 + Data_maf3)/Data_pop).transpose()
esc_data[9,:,:] = (Data_pavc / Data_pavs).transpose()
esc_data[10,:,:] = (Data_vkm / Data_pkm).transpose()
esc_data[11,:,:] = (Data_pkm / Data_pop).transpose()
# Define maximal GHG/cap
maxGHG = np.max(esc_data[[0,6],1::,:])
# Define colors
ccol = np.array([[128,128,128,255],[48,84,150,255],[198,89,17,255],[142,105,0,255],[112,48,160,255]])/255 # grey, blue, red, brown, purple
# Plot results
fig, axs = plt.subplots(nrows=1, ncols=6 , figsize=(18, 3))
fig.suptitle('Energy and material service cascade, ' + cregs[c],fontsize=18)
ProxyHandlesList = [] # For legend
plt.rcParams["axes.prop_cycle"] = plt.cycler("color", ccol)
axs[0].plot(np.arange(2016,2061), esc_data[0,1::,:], linewidth = 3)
plta = Line2D(np.arange(2016,2061), esc_data[0,1::,:], linewidth = 3)
ProxyHandlesList.append(plta) # create proxy artist for legend
axs[0].set_title('Energy-GHG per capita = \n (Scope 1 + 2 emissions) ', weight='bold')
axs[0].set_ylabel('t CO2-eq/yr', fontsize = 12)
#axs[0].set_facecolor((221/255, 235/255, 247/255))
axs[0].set_facecolor((197/255, 221/255, 241/255))
axs[0].set_ylim(bottom=0)
axs[0].set_ylim(top=1.05 * maxGHG)
axs[1].plot(np.arange(2016,2061), esc_data[1,1::,:] * 1e6, linewidth = 2.0)
axs[1].set_title('GHG per final energy *')
axs[1].set_ylabel('g CO2-eq/MJ', fontsize = 12)
axs[1].set_facecolor((238/255, 245/255, 252/255))
axs[1].set_ylim(bottom=0)
axs[2].plot(np.arange(2016,2061), esc_data[2,1::,:]/1000, linewidth = 2.0)
axs[2].set_title('Final energy per stock *')
axs[2].set_ylabel('GJ/(vehicle·yr)', fontsize = 12)
axs[2].set_facecolor((238/255, 245/255, 252/255))
axs[2].set_ylim(bottom=0)
axs[3].plot(np.arange(2016,2061), esc_data[3,1::,:], linewidth = 3.0)
axs[3].set_title('vehicles per driven km *')
axs[3].set_ylabel('vehicle/vkm', fontsize = 12)
axs[3].set_facecolor((238/255, 245/255, 252/255))
axs[3].set_ylim(bottom=0)
axs[4].plot(np.arange(2016,2061), esc_data[10,1::,:], linewidth = 3.0)
axs[4].set_title('vehicle-km per passenger-km *')
axs[4].set_ylabel('vkm/pkm', fontsize = 12)
axs[4].set_facecolor((238/255, 245/255, 252/255))
axs[4].set_ylim(bottom=0)
axs[5].plot(np.arange(2016,2061), esc_data[11,1::,:], linewidth = 3.0)
axs[5].set_title('passenger-km per capita', weight='bold')
axs[5].set_ylabel('pkm/cap', fontsize = 12)
axs[5].set_facecolor((237/255, 226/255, 246/255))
axs[5].set_ylim(bottom=0)
Labels = cscenss
fig.legend(Labels, shadow = False, prop={'size':14},ncol=5, loc = 'upper center',bbox_to_anchor=(0.5, -0.02))
plt.tight_layout()
plt.show()
title = ctitles[c]
fig.savefig(title + '_' + selectR[0] + '.png', dpi=150, bbox_inches='tight')
if ctypes[c] == 'version_3_pav': # Energy service cascade_RMI for vehicles
# get scenario list and length
if cscens[c] == 'All':
cscenss = scen
else:
cscenss = cscens[c].split(';')
nocs = len(cscenss)
selectR = [cregs[c]]
# Define data container
esc_data = np.zeros((12,46,nocs)) # 10 decoupling indices, 46 years, nocs scenarios
# EXTRACT data and convert to ESC data array
# Service
Data_pkm = np.concatenate([get_esc_data_from_pandas(ps,'Energy Service|Transportation|Passenger|Road|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_vkm = np.concatenate([get_esc_data_from_pandas(ps,'vehicle-km driven by pass. vehicles',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Population:
Data_pop = np.concatenate([get_esc_data_from_pandas(ps,'Population',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# GHG:
Data_ghg1 = np.concatenate([get_esc_data_from_pandas(ps,'Emissions|CO2|Energy|Demand|Transportation|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_ghg3 = np.concatenate([get_esc_data_from_pandas(ps,'Emissions|CO2|Energy|Supply',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_ghg4 = np.concatenate([get_esc_data_from_pandas(ps,'GHG emissions, primary material production',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Final energy:
Data_edx = np.concatenate([get_esc_data_from_pandas(ps,'Final Energy|Transportation|LDV',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Stock:
Data_pavs = np.concatenate([get_esc_data_from_pandas(ps,'In-use stock, pass. vehicles',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Inflow
Data_pavc = np.concatenate([get_esc_data_from_pandas(ps,'final consumption (use phase inflow), all drive technologies together',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Final material consumption:
Data_matm = np.concatenate([get_esc_data_from_pandas(ps,'Final consumption of materials',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
# Material footprint / RMI
Data_maf1 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, metal ores, system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_maf2 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, non-metallic minerals, system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
Data_maf3 = np.concatenate([get_esc_data_from_pandas(ps,'Material footprint, biomass (dry weight), system-wide',selectR,[cscenss[mscen]])[0] for mscen in range(0,nocs)])
esc_data[0,:,:] = ((Data_ghg1 + Data_ghg3)/Data_pop).transpose()
esc_data[1,:,:] = ((Data_ghg1 + Data_ghg3)/Data_edx).transpose()
esc_data[2,:,:] = (Data_edx / Data_pavs).transpose()
esc_data[3,:,:] = (Data_pavs / Data_vkm).transpose()
esc_data[4,:,:] = (Data_matm / Data_pavc).transpose()
esc_data[5,:,:] = (Data_ghg4 / Data_matm).transpose()
esc_data[6,:,:] = (Data_ghg4 / Data_pop).transpose()
esc_data[7,:,:] = ((Data_maf1 + Data_maf2 + Data_maf3)/Data_matm).transpose()
esc_data[8,:,:] = ((Data_maf1 + Data_maf2 + Data_maf3)/Data_pop).transpose()
esc_data[9,:,:] = (Data_pavc / Data_pavs).transpose()
esc_data[10,:,:] = (Data_vkm / Data_pkm).transpose()
esc_data[11,:,:] = (Data_pkm / Data_pop).transpose()
# Define colors
cc = np.array([[128,128,128,255],[48,84,150,255],[198,89,17,255],[142,105,0,255],[112,48,160,255]])/255 # grey, blue, red, brown, purple
# Plot results
fig, axs = plt.subplots(nrows=1, ncols=7 , figsize=(21, 3))
fig.suptitle('Energy and material service cascade, ' + cregs[c],fontsize=18)
ProxyHandlesList = [] # For legend
plt.rcParams["axes.prop_cycle"] = plt.cycler("color", cc)
axs[0].plot(np.arange(2016,2061), esc_data[11,1::,:], linewidth = 3.0)
axs[0].set_title('passenger-km per capita', weight='bold')
axs[0].set_ylabel('pkm/cap', fontsize = 12)
axs[0].set_facecolor((237/255, 226/255, 246/255))
axs[0].set_ylim(bottom=0)
axs[1].plot(np.arange(2016,2061), esc_data[10,1::,:], linewidth = 3.0)
axs[1].set_title('* vehicle-km per passenger-km')
axs[1].set_ylabel('vkm/pkm', fontsize = 12)
axs[1].set_facecolor((253/255, 239/255, 231/255))
axs[1].set_ylim(bottom=0)
axs[2].plot(np.arange(2016,2061), esc_data[3,1::,:], linewidth = 3.0)
axs[2].set_title('* vehicles per driven km')
axs[2].set_ylabel('vehicle/vkm', fontsize = 12)
axs[2].set_facecolor((253/255, 239/255, 231/255))
axs[2].set_ylim(bottom=0)
axs[3].plot(np.arange(2016,2061), esc_data[9,1::,:], linewidth = 2.0)
axs[3].set_title('* inflow per vehicle')
axs[3].set_ylabel('1/yr', fontsize = 12)
axs[3].set_facecolor((253/255, 239/255, 231/255))
axs[3].set_ylim(bottom=0)
axs[4].plot(np.arange(2016,2061), esc_data[4,1::,:], linewidth = 2.0)
axs[4].set_title('* material intensity of inflow')
axs[4].set_ylabel('t/vehicle', fontsize = 12)
axs[4].set_facecolor((253/255, 239/255, 231/255))
axs[4].set_ylim(bottom=0)
axs[5].plot(np.arange(2016,2061), esc_data[7,1::,:], linewidth = 2.0)
axs[5].set_title('* RMI per material')
axs[5].set_ylabel('t/t', fontsize = 12)
axs[5].set_facecolor((253/255, 239/255, 231/255))
axs[5].set_ylim(bottom=0)
axs[6].plot(np.arange(2016,2061), esc_data[8,1::,:], linewidth = 3.0)
axs[6].set_title('= RMI per capita', weight='bold')
axs[6].set_ylabel('t/yr', fontsize = 12)
axs[6].set_facecolor((249/255, 203/255, 177/255))
axs[6].set_ylim(bottom=0)
Labels = cscenss
fig.legend(Labels, shadow = False, prop={'size':14},ncol=5, loc = 'upper center',bbox_to_anchor=(0.5, -0.02))
plt.tight_layout()
plt.show()
title = ctitles[c]
fig.savefig(title + '_' + selectR[0] + '.png', dpi=150, bbox_inches='tight')
#
#
#
# The end.
#
#
#