-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun.py
364 lines (332 loc) · 21.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# This file contains code that is derived from Stability AI's software products,
# which are licensed under the Stability AI Non-Commercial Research Community License Agreement.
# Copyright (c) Stability AI Ltd. All Rights Reserved.
#
# The original work is provided by Stability AI and is available under the terms of the
# Stability AI Non-Commercial Research Community License Agreement, dated November 28, 2023.
# For more information, see https://stability.ai/use-policy.
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline, StableCascadeUNet
import gradio as gr
import json
import os
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import re
import torch
import uuid
import threading
# Initialize global settings
device = "cuda"
dtype = torch.bfloat16
output_directory = "./output"
def load_model(model_name):
# Load model from disk every time it's needed
if model_name == "prior":
model = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=dtype, use_safetensors=True).to(device)
elif model_name == "decoder":
model = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=dtype, use_safetensors=True).to(device)
else:
raise ValueError(f"Unknown model name: {model_name}")
return model
def clean_prompt(prompt):
"""
Cleans and formats the prompt text.
Removes unnecessary articles ('a' and 'the'), standardizes whitespace and comma usage,
and ensures the sanitized prompt has the format "text, text, text text".
"""
prompt = re.sub(r"\b(a|the)\b", "", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\s+", " ", prompt).strip()
prompt = re.sub(r"\s*,\s*", ", ", prompt)
prompt = prompt.strip(',')
prompt_parts = [part.strip() for part in prompt.split(',')]
prompt_parts = [part for part in prompt_parts if part]
prompt = ', '.join(prompt_parts)
return prompt
def clean_prompt_with_timeout(prompt, timeout):
def wrapper():
try:
cleaned_prompt = clean_prompt(prompt)
wrapper.result = cleaned_prompt
except Exception as e:
print(f"Error occurred during prompt cleaning: {str(e)}. Using original prompt.")
wrapper.result = prompt
thread = threading.Thread(target=wrapper)
thread.start()
thread.join(timeout)
if thread.is_alive():
print("Prompt cleaning timed out. Using original prompt.")
thread.result = prompt
return wrapper.result
def generate_images(prompt, height, width, negative_prompt, guidance_scale, num_inference_steps, num_images_per_prompt, seed):
"""
Generates images based on the provided parameters and settings.
"""
os.makedirs(output_directory, exist_ok=True)
output_images = []
calculated_steps_prior = int(num_inference_steps * 2 / 3)
calculated_steps_decoder = int(num_inference_steps * 1 / 3)
# Sanitize user input prompt before using it, with a timeout of 5 seconds
cleaned_prompt = clean_prompt_with_timeout(prompt, timeout=5)
print("Processed prompt:", cleaned_prompt)
with torch.cuda.amp.autocast(dtype=dtype):
seed = torch.seed() if seed == -1 else seed # Get the initial seed
torch.manual_seed(seed) # Apply the seed for generation
generator = torch.Generator(device).manual_seed(seed) # Preserve for reproducibility
# Load, use, and discard the prior model
prior = load_model("prior")
prior.enable_model_cpu_offload()
prior_output = prior(
prompt=cleaned_prompt,
height=int(height),
width=int(width),
negative_prompt=negative_prompt,
guidance_scale=float(guidance_scale),
num_inference_steps=int(calculated_steps_prior),
num_images_per_prompt=int(num_images_per_prompt),
generator=generator,
)
del prior
torch.cuda.empty_cache() # Release GPU memory
# Load, use, and discard the decoder model
decoder = load_model("decoder")
decoder.enable_model_cpu_offload()
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.to(dtype),
prompt=cleaned_prompt,
negative_prompt=negative_prompt,
guidance_scale=1.9, # Guidance scale is enabled by setting guidance_scale > 1
num_inference_steps=calculated_steps_decoder,
output_type="pil",
generator=generator,
).images
del decoder
torch.cuda.empty_cache() # Release GPU memory
metadata_embedded = {
"parameters": "Stable Cascade",
"scheduler": "DDPMWuerstchenScheduler",
"prompt": cleaned_prompt,
"negative_prompt": negative_prompt,
"width": int(width),
"height": int(height),
"steps": (calculated_steps_prior, calculated_steps_decoder),
"guidance_scale": float(guidance_scale),
"seed": str(seed)
# ... any other metadata you want
}
#Define the metadata you want to save
metadata_filename = {
"seed": str(seed)
}
# Metadata and Saving
for image in decoder_output:
unique_filename = f"image_seed-{metadata_filename['seed']}_identifier-{uuid.uuid4()}.png"
save_path = os.path.join(output_directory, unique_filename)
# Prepare metadata using PngInfo
metadata = PngInfo()
for key, value in metadata_embedded.items(): # Iterate through metadata_embedded
if not isinstance(value, str): # Check if value is already a string
value = str(value) # Convert to string if needed
metadata.add_text(key, value)
image.save(save_path, pnginfo=metadata) # Embed and save
output_images.append(save_path)
return output_images
# Load the JSON data
with open('prompt_configurator/data_prompt_configurator.json', 'r') as file:
data = json.load(file)
# Retrieves style_choices, technique, subject, etc., from the loaded JSON file
# Styles list from https://latenightportrait.com/60-art-styles-explained-with-examples/#ib-toc-anchor-46
style_choices = data['style_choices']
technique = data['technique']
subject = data['subject']
action = data['action']
affective_adverb = data['affective_adverb']
physique = data['physique']
hairstyle = data['hairstyle']
facial_features = data['facial_features']
top = data['top']
bottom = data['bottom']
background = data['background']
lighting = data['lighting']
color = data['color']
texture = data['texture']
camera = data['camera']
framing = data['framing']
mood = data['mood']
story = data['story']
post_processing = data['post_processing']
# UI Layout putting Configurator blocks inside a function for clarity.
def configure_ui():
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False) as demo: # Change to your desired theme
gr.HTML("""
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=IBM+Plex+Sans+Condensed&display=swap" rel="stylesheet">
""")
gr.Markdown("# Stable Cascade Image Generator")
# CSS placement
gr.HTML("""
<style>
.my-slider-container {
height: auto;
}
</style>
""")
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
generate_button = gr.Button("Generate")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="")
with gr.Row(): # For three parameter columns
with gr.Column():
# components in left column
width = gr.Slider(minimum=512, maximum=2048, step=1, value=1024, label="Image Width")
height = gr.Slider(minimum=512, maximum=2048, step=1, value=1024, label="Image Height")
with gr.Column():
# components in central column
num_inference_steps = gr.Slider(minimum=1, maximum=150, step=1, value=54, label="Steps")
num_images_per_prompt = gr.Number(label="Number of Images per Prompt", value=2)
with gr.Column():
# components in right column
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=4.0, label="Guidance Scale")
seed = gr.Number(label="Seed", value=-1)
generate_button.click(
fn=generate_images,
inputs=[prompt, height, width, negative_prompt, guidance_scale, num_inference_steps, num_images_per_prompt, seed],
outputs=[gallery]
)
def handle_dropdown_change(*args):
selected_options = ' '.join([str(arg) for arg in args if arg])
return selected_options
configurator_group = gr.Group(visible=True) # Group to hold the configurator elements. Initially hidden.
with configurator_group:
with gr.Row():
# Prompt Configurator dropdowns
output_text = gr.Textbox("Your configured prompt.", label="Selected Option")
with gr.Row():
style_dropdown = gr.Dropdown(style_choices, label="Style")
technique_dropdown = gr.Dropdown(technique, label="Technique")
subject_dropdown = gr.Dropdown(subject, label="Subject")
with gr.Row():
action_dropdown = gr.Dropdown(action, label="Action")
affective_adverb_dropdown = gr.Dropdown(affective_adverb, label="Affective verb")
with gr.Row():
physique_dropdown = gr.Dropdown(physique, label="Physique")
hairstyle_dropdown = gr.Dropdown(hairstyle, label="Hairstyle")
facial_features_dropdown = gr.Dropdown(facial_features, label="Facial features")
top_dropdown = gr.Dropdown(top, label="Top")
bottom_dropdown = gr.Dropdown(bottom, label="Bottom")
with gr.Row():
background_dropdown = gr.Dropdown(background, label="Background")
lighting_dropdown = gr.Dropdown(lighting, label="Lighting")
with gr.Row():
color_dropdown = gr.Dropdown(color, label="Color")
texture_dropdown = gr.Dropdown(texture, label="Texture")
with gr.Row():
camera_dropdown = gr.Dropdown(camera, label="Camera")
framing_dropdown = gr.Dropdown(framing, label="Framing")
with gr.Row():
mood_dropdown = gr.Dropdown(mood, label="Mood")
story_dropdown = gr.Dropdown(story, label="Story")
with gr.Row():
post_processing_dropdown = gr.Dropdown(post_processing, label="Post-processing")
# Assuming you want to do something with the dropdowns, like displaying the selected value
style_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
technique_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
subject_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
action_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
affective_adverb_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
physique_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
hairstyle_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
facial_features_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
top_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
bottom_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
background_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
lighting_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
color_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
texture_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
camera_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
framing_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
mood_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
story_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
post_processing_dropdown.change(
fn=handle_dropdown_change,
inputs=[style_dropdown, technique_dropdown, subject_dropdown, action_dropdown, affective_adverb_dropdown, physique_dropdown, hairstyle_dropdown, facial_features_dropdown, top_dropdown, bottom_dropdown, background_dropdown, lighting_dropdown, color_dropdown, texture_dropdown, camera_dropdown, framing_dropdown, mood_dropdown, story_dropdown, post_processing_dropdown],
outputs=[output_text]
)
return demo # Return the Blocks object for external access
# Adjusted call to configure_ui and launching
demo_ui = configure_ui() # This will receive the 'demo' object returned from the function
demo_ui.launch(inbrowser=True) # Use the returned object to launch the UI