Skip to content

Latest commit

 

History

History
128 lines (98 loc) · 3.21 KB

README.md

File metadata and controls

128 lines (98 loc) · 3.21 KB

18 - Egg Storage

Description

Level: medium
Author: 0xI

Last year someone stole some eggs from Thumper. This year he decided to use cutting edge technology to protect his eggs.

Solution

As this was one of my challenges I will discuss the intended solution for this challenge. The source code of the challenge can be found here.

First of all we decompile the WebAssembly or reverse engineer the code by hand. There are three functions in total: validateRange, validatePassword and decrypt

The first one checks if all characters of the password (starting at the fifth) are in [48, 49, 51, 52, 53, 72, 76, 88, 99, 100, 102, 114].

ValidatePassword contains the first four characters hard-coded: Th3P and checks multiple conditions:

m[19]               == m[13]
m[8]                == m[12]
m[18]               == m[11]
m[1] - m[3]         == 14
m[10] + 1           == m[11]
m[5] % m[4]         == 40
m[1] - m[5] + m[15] == 79
m[3] - m[10]        == m[16]
m[5] % m[0] * 2     == m[9]
m[9] % m[2]         == 20
m[7] % m[9]         == m[17] - 46
m[3] % m[2]         == m[6]
m[19] % m[18]       == 2

Furthermore, the sum of all ASCII values has to be 1352 and all ASCII values XORed should be 44.

With all those conditions we can write a Z3 solver, that prints the flag:

def check():
    s =  Solver()

    def is_valid(x):
        return Or(
                (x == ord('0')),
                (x == ord('1')),
                (x == ord('3')),
                (x == ord('4')),
                (x == ord('5')),
                (x == ord('H')),
                (x == ord('L')),
                (x == ord('X')),
                (x == ord('c')),
                (x == ord('d')),
                (x == ord('f')),
                (x == ord('r')))

    key=""
    for i in range(0, 24):
        key += "key[{}] ".format(i)

    m = BitVecs(key, 8)

    for i in range(4, 24):
        s.add(is_valid(m[i]))

    s.add(m[0] == ord('T'))
    s.add(m[1] == ord('h'))
    s.add(m[2] == ord('3'))
    s.add(m[3] == ord('P'))
    s.add(m[4] == ord('4'))

    s.add(m[23] == m[17])
    s.add(m[12] == m[16])
    s.add(m[22] == m[15])

    s.add(m[5] - m[7] == 14)
    s.add(m[14] + 1 == m[15])
    s.add(m[9] % m[8] == 40)
    s.add(m[5] - m[9] + m[19] == 79)
    s.add(m[7] - m[14] == m[20])
    s.add(m[9] % m[4] * 2 == m[13])
    s.add(m[13] % m[6] == 20)
    s.add(m[11] % m[13] == m[21] - 46)
    s.add(m[7] % m[6]  == m[10])
    s.add(m[23] % m[22] == 2)

    # Those conditions can be found by running the z3 solver
    s.add(m[5] == ord('r'))
    s.add(m[6] == ord('4'))
    s.add(m[7] == ord('d'))
    s.add(m[8] == ord('0'))
    s.add(m[9] == ord('X'))

    while s.check() == z3.sat:
      model = s.model()

      out = ""
      nope = []

      for i in m:
          if str(i):
              out += chr(model[i].as_long() & 0xff)
          nope.append(i != model[i])

      # Ignore solutions that are equal to this one
      s.add(Or(nope[:-1]))

      sum = 0
      xor = 0

      for i in range(4, 24):
        sum += ord(out[i])
        xor ^= ord(out[i])

      print(out)

      if (sum == 1352 and xor == 44):
        print("Solution found: %s" % out)
        return

check()

The flag is Th3P4r4d0X0fcH01c3154L13.