forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrossKernel.cpp
81 lines (70 loc) · 2.76 KB
/
CrossKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/Cross.h>
#include <numeric>
#include <iterator>
#include <algorithm>
#include <vector>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <c10/util/irange.h>
namespace at::native {
namespace {
template<typename scalar_t>
static void apply_cross(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
int64_t total = a.numel() / 3;
int64_t a_stride = a.stride(dim);
int64_t b_stride = b.stride(dim);
int64_t r_stride = result.stride(dim);
scalar_t *a_ptr = a.data_ptr<scalar_t>();
scalar_t *b_ptr = b.data_ptr<scalar_t>();
scalar_t *r_ptr = result.data_ptr<scalar_t>();
parallel_for(0, total, internal::GRAIN_SIZE, [&](int64_t s, int64_t e) {
const int64_t a_dim = a.dim();
std::vector<int64_t> position_in_dims(a_dim);
int64_t index_in_curr_dim = s;
int64_t a_start = 0;
int64_t b_start = 0;
int64_t r_start = 0;
for (const auto i : c10::irange(a.dim())) {
if (i == dim) continue;
position_in_dims[i] = index_in_curr_dim % a.size(i);
a_start += (index_in_curr_dim % a.size(i)) * a.stride(i);
b_start += (index_in_curr_dim % b.size(i)) * b.stride(i);
r_start += (index_in_curr_dim % result.size(i)) * result.stride(i);
index_in_curr_dim = index_in_curr_dim / a.size(i);
}
while (s < e) {
r_ptr[r_start+0*r_stride] = a_ptr[a_start+1*a_stride]*b_ptr[b_start+2*b_stride] - a_ptr[a_start+2*a_stride]*b_ptr[b_start+1*b_stride];
r_ptr[r_start+1*r_stride] = a_ptr[a_start+2*a_stride]*b_ptr[b_start+0*b_stride] - a_ptr[a_start+0*a_stride]*b_ptr[b_start+2*b_stride];
r_ptr[r_start+2*r_stride] = a_ptr[a_start+0*a_stride]*b_ptr[b_start+1*b_stride] - a_ptr[a_start+1*a_stride]*b_ptr[b_start+0*b_stride];
s++;
for (const auto i : c10::irange(a.dim())) {
if (i == dim) {
continue;
}
position_in_dims[i]++;
a_start += a.stride(i);
b_start += b.stride(i);
r_start += result.stride(i);
if (position_in_dims[i] == a.size(i) && i != a.dim()-1) {
a_start -= position_in_dims[i] * a.stride(i);
b_start -= position_in_dims[i] * b.stride(i);
r_start -= position_in_dims[i] * result.stride(i);
position_in_dims[i] = 0;
} else {
break;
}
}
}
});
}
static void cross_kernel_impl(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, result.scalar_type(), "cross", [&]() {
apply_cross<scalar_t>(result, a, b, dim);
});
}
} // anonymous namespace
REGISTER_DISPATCH(cross_stub, &cross_kernel_impl);
} // namespace at::native