forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler_kineto.cpp
936 lines (823 loc) · 31.7 KB
/
profiler_kineto.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
#include <cstring>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <torch/csrc/autograd/profiler_kineto.h>
#include <c10/macros/Export.h>
#include <c10/util/ApproximateClock.h>
#include <c10/util/Exception.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <c10/util/overloaded.h>
#include <torch/csrc/profiler/api.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/containers.h>
#include <torch/csrc/profiler/events.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/orchestration/observer.h>
#include <torch/csrc/profiler/perf.h>
#include <torch/csrc/profiler/standalone/itt_observer.h>
#include <torch/csrc/profiler/standalone/nvtx_observer.h>
#include <torch/csrc/profiler/util.h>
#include <ATen/Context.h>
#include <deque>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <utility>
#ifdef USE_KINETO
#include <libkineto.h>
#include <time_since_epoch.h>
#ifndef _MSC_VER
// TODO: TO be removed, once this properly works from libkineto
// Literal copy-n-paste from third_party/kineto/libkineto/src/WeakSymbols.cpp
extern "C" {
// This function is needed to avoid superfluous dependency on GNU OpenMP library
// when cuPTI is linked statically For more details see
// https://github.com/pytorch/pytorch/issues/51026
__attribute__((weak)) int acc_get_device_type();
__attribute__((weak)) int acc_get_device_type() {
throw std::runtime_error(
"Dummy implementation of acc_get_device_type is not supposed to be called!");
}
} // extern "C"
#endif // _MSC_VER
#endif // USE_KINETO
namespace torch {
namespace autograd {
namespace profiler {
namespace {
inline int64_t getTimeUs() {
#ifdef USE_KINETO
return libkineto::timeSinceEpoch(std::chrono::system_clock::now());
#else
return c10::getTime() / 1000;
#endif // USE_KINETO
}
using torch::profiler::impl::ActiveProfilerType;
using torch::profiler::impl::EventType;
using torch::profiler::impl::ExtraFields;
using torch::profiler::impl::get_record_concrete_inputs_enabled;
using torch::profiler::impl::ivalueListToStr;
using torch::profiler::impl::op_input_t;
using torch::profiler::impl::ProfilerStateBase;
using torch::profiler::impl::PyExtraFieldsBase;
using torch::profiler::impl::Result;
using torch::profiler::impl::shape;
using torch::profiler::impl::shapesToStr;
using torch::profiler::impl::stacksToStr;
using torch::profiler::impl::strListToStr;
using torch::profiler::impl::TensorMetadata;
using torch::profiler::impl::variantShapesToStr;
struct OpArgData {
bool has_data;
std::vector<shape> shapes;
std::vector<std::string> dtypes;
std::vector<c10::IValue> concrete_inputs;
std::vector<std::vector<int64_t>> shapes_for_kineto_event;
};
auto parseArgData(
const std::vector<op_input_t>& input_shapes,
const std::vector<op_input_t>& concrete_inputs) {
if (input_shapes.empty()) {
return OpArgData{false, {}, {}, {}, {}};
}
std::vector<shape> shapes(input_shapes.size());
std::vector<std::vector<int64_t>> shapes_for_kineto_event(
input_shapes.size());
std::vector<std::string> dtypes(input_shapes.size());
std::vector<c10::IValue> concrete_inputs_list;
for (const auto& i : c10::irange(input_shapes.size())) {
std::visit(
c10::overloaded(
[&](const TensorMetadata& t) {
shapes[i] = t.sizes_;
shapes_for_kineto_event[i] = t.sizes_;
dtypes[i] = std::string(scalarTypeToTypeMeta(t.dtype_).name());
},
[&](const std::vector<TensorMetadata>& l) {
std::vector<std::vector<int64_t>> shape;
shape.reserve(l.size());
for (const auto& t : l) {
shape.emplace_back(t.sizes_);
}
shapes[i] = shape;
dtypes[i] = "TensorList";
},
[&](const c10::IValue& val) { dtypes[i] = "Scalar"; },
[&](const auto&) {}),
input_shapes[i]);
}
// If we recorded concrete inputs, then parse them
if (input_shapes.size() == concrete_inputs.size() &&
!concrete_inputs.empty()) {
concrete_inputs_list.resize(input_shapes.size());
for (const auto& i : c10::irange(input_shapes.size())) {
std::visit(
c10::overloaded(
[&](const c10::IValue& val) { concrete_inputs_list[i] = val; },
[&](const auto&) {}),
input_shapes[i]);
std::visit(
c10::overloaded(
[&](const c10::IValue& val) {
concrete_inputs_list[i] = val;
dtypes[i] = "ScalarList";
},
[&](const auto&) {}),
concrete_inputs[i]);
}
}
return OpArgData{
true, shapes, dtypes, concrete_inputs_list, shapes_for_kineto_event};
}
struct MetadataBase {
MetadataBase(const std::shared_ptr<Result>& result)
: kineto_activity_{result->kineto_activity_} {
if (std::holds_alternative<ExtraFields<EventType::Kineto>>(
result->extra_fields_)) {
// In order to add metadata we have to downcast from
// `libkineto::ITraceActivity` to `libkineto::GenericTraceActivity`. We
// know that all activities provided by PyTorch are of the correct type,
// however Kineto profilers can (and do) add events that inherit directly
// from ITraceActivity. As a result, any Result which was constructed from
// an event that Kineto provided is unsafe to cast.
if (!(SOFT_ASSERT(!hasKinetoActivity()))) {
result->kineto_activity_ = nullptr;
}
kineto_activity_ = result->kineto_activity_;
}
}
void addMetadata(const std::string& key, const std::string& value) {
if (kineto_activity_ && !value.empty() && value != "\"\"") {
torch::profiler::impl::kineto::addMetadata(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<torch::profiler::impl::kineto::activity_t*>(
kineto_activity_),
key,
value);
}
}
bool hasKinetoActivity() const {
return kineto_activity_ != nullptr;
}
private:
const torch::profiler::impl::kineto::activity_t* kineto_activity_{nullptr};
};
struct AddTensorboardFields : public MetadataBase {
AddTensorboardFields(
const std::shared_ptr<Result>& result,
KinetoEvent& kineto_event)
: MetadataBase(result) {
result->visit(*this);
const auto module_hierarchy = kineto_event.moduleHierarchy();
addMetadata("Module Hierarchy", stacksToStr(module_hierarchy.vec(), "."));
addMetadata("Call stack", stacksToStr(kineto_event.stack().vec(), ";"));
result->visit_if_base<PyExtraFieldsBase>([&, this](const auto& i) -> void {
this->addMetadata("Python id", std::to_string(i.id_));
c10::optional<std::string> parent_id;
std::shared_ptr<Result> parent = result->parent_.lock();
while (parent && !parent_id.has_value()) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto& j) { parent_id = std::to_string(j.id_); });
parent = parent->parent_.lock();
}
this->addMetadata("Python parent id", parent_id.value_or("null"));
});
}
void operator()(const ExtraFields<EventType::PyCall>& py_call) {
if (py_call.module_.has_value()) {
addMetadata("Python module id", std::to_string(py_call.module_->id_));
}
}
template <typename T>
void operator()(const T&) {}
};
struct AddGenericMetadata : public MetadataBase {
AddGenericMetadata(
std::shared_ptr<Result>& result,
const torch::profiler::impl::ProfilerConfig* config)
: MetadataBase(result), config_(config) {
result->visit(*this);
if (config->experimental_config.verbose) {
result->visit_if_base<PyExtraFieldsBase>(
[&, this](const auto& i) -> void {
this->addMetadata("Python thread", std::to_string(i.python_tid_));
});
}
}
void operator()(ExtraFields<EventType::TorchOp>& op_event) {
const auto arg_data =
parseArgData(op_event.inputs_, op_event.concrete_inputs_);
if (arg_data.has_data) {
if (get_record_concrete_inputs_enabled()) {
addMetadata("Input Dims", variantShapesToStr(arg_data.shapes));
} else {
addMetadata(
"Input Dims", shapesToStr(arg_data.shapes_for_kineto_event));
}
addMetadata("Input type", strListToStr(arg_data.dtypes));
if (!arg_data.concrete_inputs.empty()) {
addMetadata(
"Concrete Inputs", ivalueListToStr(arg_data.concrete_inputs));
}
}
// Add extra metadata if any
for (const auto& [key, val] : op_event.extra_meta_) {
addMetadata(key, val);
}
if (config_ && !config_->experimental_config.performance_events.empty()) {
auto& event_names = config_->experimental_config.performance_events;
for (const auto i : c10::irange(op_event.perf_event_counters_->size())) {
addMetadata(
event_names[i],
std::to_string((*op_event.perf_event_counters_)[i]));
}
}
// add information about an associated forward op, if a sequence number
// is available (e.g. during training)
if (op_event.sequence_number_ >= 0) {
addMetadata("Fwd thread id", std::to_string(op_event.forward_tid_));
addMetadata("Sequence number", std::to_string(op_event.sequence_number_));
}
}
void operator()(ExtraFields<EventType::Backend>& backend_event) {
if (!backend_event.backend_.empty()) {
addMetadata("Backend", "\"" + backend_event.backend_ + "\"");
}
}
void operator()(const ExtraFields<EventType::Allocation>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Addr", std::to_string(reinterpret_cast<intptr_t>(alloc.ptr_)));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
void operator()(const ExtraFields<EventType::OutOfMemory>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
template <typename T>
void operator()(const T&) {}
private:
/* To get names of the performance events */
const torch::profiler::impl::ProfilerConfig* config_;
};
struct KinetoThreadLocalState : public ProfilerStateBase {
explicit KinetoThreadLocalState(
const ProfilerConfig& config,
std::set<torch::profiler::impl::ActivityType> activities)
: ProfilerStateBase(config),
start_time_(getTimeUs()),
record_queue_(config, std::move(activities)) {}
~KinetoThreadLocalState() override = default;
static KinetoThreadLocalState* get(bool global) {
auto* state = ProfilerStateBase::get(/*global=*/global);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
state == nullptr ||
state->profilerType() == ActiveProfilerType::KINETO);
return static_cast<KinetoThreadLocalState*>(state);
}
ActiveProfilerType profilerType() override {
return ActiveProfilerType::KINETO;
}
void reportVulkanEventToProfiler(torch::profiler::impl::vulkan_id_t id) {
if (!config_.disabled()) {
record_queue_.getSubqueue()->emplace_vulkan_event(
c10::getApproximateTime(), id);
}
}
void reportMemoryUsage(
void* ptr,
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
record_queue_.getSubqueue()->emplace_allocation_event(
c10::getApproximateTime(),
ptr,
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
void reportOutOfMemory(
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
record_queue_.getSubqueue()->emplace_ooms_event(
c10::getApproximateTime(),
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
const post_process_t& getEventPostProcessingCallback() const {
return event_post_process_cb_;
}
void setEventPostProcessingCallback(post_process_t&& cb) {
event_post_process_cb_ = std::move(cb);
}
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>
finalizeTrace() {
auto end_time = getTimeUs();
record_queue_.stop();
std::lock_guard<std::mutex> guard(state_mutex_);
auto converter = clock_converter_.makeConverter();
auto records_and_trace =
record_queue_.getRecords(std::move(converter), start_time_, end_time);
materializeOpEvents(records_and_trace.first);
// `kineto_events_` does not include Python events. Instead it exposes them
// via the `stacks` property.
kineto_events_.erase(
std::remove_if(
kineto_events_.begin(),
kineto_events_.end(),
[](const auto& i) { return i.isPythonFunction(); }),
kineto_events_.end());
return std::move(records_and_trace.second);
}
template <typename T>
void invokeCallback(T& t) {
if (event_post_process_cb_) {
event_post_process_cb_(t.debug_handle_, t.jit_stack_, t.jit_modules_);
}
}
void materializeOpEvents(std::vector<std::shared_ptr<Result>>& events) {
for (auto& e : events) {
if (e->parent_.expired() && e->deviceType() == c10::DeviceType::CPU) {
event_tree_.push_back(e);
}
if (e->finished_) {
e->visit(c10::overloaded(
[this](ExtraFields<EventType::TorchOp>& i) { invokeCallback(i); },
[this](ExtraFields<EventType::Backend>& i) { invokeCallback(i); },
[](auto&) {}));
kineto_events_.emplace_back(e, config_.experimental_config.verbose);
AddTensorboardFields add_tb(e, kineto_events_.back());
AddGenericMetadata add_generic(e, &config_);
// It is not safe to use the activity after post processing.
e->kineto_activity_ = nullptr;
}
}
}
uint64_t start_time_;
c10::ApproximateClockToUnixTimeConverter clock_converter_;
torch::profiler::impl::RecordQueue record_queue_;
std::vector<KinetoEvent> kineto_events_;
std::vector<experimental_event_t> event_tree_;
// Optional, if event post-processing is enabled.
post_process_t event_post_process_cb_;
};
template <bool use_global_state_ptr = false>
std::unique_ptr<at::ObserverContext> onFunctionEnter(
const at::RecordFunction& fn) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return nullptr;
}
return state_ptr->record_queue_.getSubqueue()->begin_op(fn);
}
// @lint-ignore CLANGTIDY clang-diagnostic-unused-parameter
template <bool use_global_state_ptr = false>
void onFunctionExit(
const at::RecordFunction& fn,
at::ObserverContext* ctx_ptr) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return;
}
const auto& config = state_ptr->config();
auto* kineto_ctx_ptr =
static_cast<torch::profiler::impl::KinetoObserverContext*>(ctx_ptr);
TORCH_INTERNAL_ASSERT(kineto_ctx_ptr != nullptr);
kineto_ctx_ptr->event_->end_time_ = c10::getApproximateTime();
if (!config.experimental_config.performance_events.empty()) {
state_ptr->record_queue_.getSubqueue()->disable_perf_profiler(
*kineto_ctx_ptr->event_->counters_);
}
kineto_ctx_ptr->event_->basic_fields_.end_tid_ =
at::RecordFunction::currentThreadId();
if (config.state == ProfilerState::KINETO_GPU_FALLBACK) {
try {
auto fallback = kineto_ctx_ptr->fallback_;
TORCH_INTERNAL_ASSERT(fallback != nullptr);
torch::profiler::impl::cudaStubs()->record(
nullptr, &fallback->device_event_end_, nullptr);
} catch (const std::exception& e) {
LOG(WARNING) << "Failed to record CUDA event. " << e.what();
}
} else if (config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK) {
auto fallback = kineto_ctx_ptr->fallback_;
TORCH_INTERNAL_ASSERT(fallback != nullptr);
torch::profiler::impl::privateuse1Stubs()->record(
nullptr, &fallback->device_event_end_, nullptr);
}
if (fn.scope() == at::RecordScope::USER_SCOPE) {
torch::profiler::impl::kineto::popUserCorrelationId();
} else {
torch::profiler::impl::kineto::popCorrelationId();
}
}
template <bool use_global_callback = false>
void pushProfilingCallbacks(const std::unordered_set<at::RecordScope>& scopes) {
auto registration_state_ptr =
KinetoThreadLocalState::get(use_global_callback);
TORCH_INTERNAL_ASSERT(registration_state_ptr, "Expected profiler state set");
auto recordFunctionCallback =
at::RecordFunctionCallback(
onFunctionEnter<use_global_callback>,
onFunctionExit<use_global_callback>)
.needsInputs(registration_state_ptr->config().report_input_shapes)
.scopes(scopes);
if constexpr (use_global_callback) {
registration_state_ptr->setCallbackHandle(
at::addGlobalCallback(recordFunctionCallback));
} else {
registration_state_ptr->setCallbackHandle(
at::addThreadLocalCallback(recordFunctionCallback));
}
}
} // namespace
void reportBackendEventToActiveKinetoProfiler(
const int64_t start_time_us,
const int64_t end_time_us,
const int64_t debug_handle,
const at::RecordScope scope,
const std::string& event_name,
const std::string& backend_name) {
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
auto state_ptr = KinetoThreadLocalState::get(/*global=*/false);
if (!state_ptr) {
return;
}
state_ptr->record_queue_.getSubqueue()->emplace_backend_event(
start_time_us,
end_time_us,
debug_handle,
scope,
event_name,
backend_name);
/* no support for input shapes now?
if (config.report_input_shapes) {
ctx_ptr->shapes = inputSizes(fn);
ctx_ptr->dtypes = inputTypes(fn);
}
*/
}
void prepareProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities) {
if (config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT) {
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK,
"Supported only in Kineto profiler");
torch::profiler::impl::kineto::prepareTrace(
/*cpuOnly=*/!(at::hasCUDA() || at::hasXPU() || at::hasMTIA()),
activities,
config.experimental_config);
if (!config.experimental_config.performance_events.empty()) {
/* For now only CPU activity is supported */
TORCH_CHECK(
activities.count(torch::autograd::profiler::ActivityType::CPU),
"Cannot run cpu hardware profiler without CPU activities, please only use CPU activity type");
/*
* Sending a warning and passing the non-standard event to the backend
* Backend can abort if the event is not supported.
* TODO Should we gracefully drop the invalid event if we have atleast one
* valid?
*/
auto is_standard_event = [](const std::string& event) -> bool {
for (auto e : torch::profiler::ProfilerPerfEvents) {
if (!std::strcmp(event.c_str(), e)) {
return true;
}
}
return false;
};
for (const auto& e : config.experimental_config.performance_events) {
if (!is_standard_event(e)) {
TORCH_WARN("Forwarding a non-standard CPU performance event : ", e);
}
}
}
}
void enableProfilerWithEventPostProcess(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
post_process_t&& cb,
const std::unordered_set<at::RecordScope>& scopes) {
TORCH_CHECK(
config.state != ProfilerState::NVTX,
"NVTX does not support post processing callback.");
TORCH_CHECK(
config.state != ProfilerState::ITT,
"ITT does not support post processing callback.");
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
enableProfiler(config, activities, scopes);
auto state_ptr = KinetoThreadLocalState::get(config.global());
state_ptr->setEventPostProcessingCallback(std::move(cb));
}
void enableProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
const std::unordered_set<at::RecordScope>& scopes) {
const auto has_cpu = activities.count(ActivityType::CPU);
TORCH_CHECK(
KinetoThreadLocalState::get(/*global=*/config.global()) == nullptr,
"Profiler is already enabled",
(config.global() ? "." : " on this thread."));
if (config.state == ProfilerState::NVTX) {
torch::profiler::impl::pushNVTXCallbacks(config, scopes);
return;
} else if (config.state == ProfilerState::ITT) {
torch::profiler::impl::pushITTCallbacks(config, scopes);
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK ||
config.global());
TORCH_CHECK(!activities.empty(), "No activities specified.");
TORCH_INTERNAL_ASSERT(
has_cpu || !config.global(),
"Ondemand profiling must enable CPU tracing");
KinetoThreadLocalState::push(
std::make_shared<KinetoThreadLocalState>(config, activities));
if (has_cpu) {
config.global() ? pushProfilingCallbacks</*global=*/true>(scopes)
: pushProfilingCallbacks</*global=*/false>(scopes);
}
if (!config.global()) {
torch::profiler::impl::kineto::startTrace();
}
}
std::unique_ptr<ProfilerResult> disableProfiler() {
auto state_ptr = ProfilerStateBase::pop();
const auto& config = state_ptr->config();
TORCH_CHECK(
state_ptr &&
(config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK ||
config.state == ProfilerState::KINETO_ONDEMAND ||
config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT),
"Can't disable Kineto profiler when it's not running");
state_ptr->removeCallback();
// Traces are converged via libkineto automatically for ondemand flow
if (state_ptr->config().global()) {
(void)std::static_pointer_cast<KinetoThreadLocalState>(state_ptr)
->finalizeTrace();
return std::make_unique<ProfilerResult>();
}
// Shared among NVTX, KINETO, KINETO_GPU_FALLBACK, KINETO_PRIVATEUSE1_FALLBACK
std::unique_ptr<ProfilerResult> result;
if (state_ptr->config().state == ProfilerState::NVTX) {
result = std::make_unique<ProfilerResult>();
}
if (config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK) {
auto kineto_state_ptr =
std::static_pointer_cast<KinetoThreadLocalState>(state_ptr);
auto trace = kineto_state_ptr->finalizeTrace();
result = std::make_unique<ProfilerResult>(
kineto_state_ptr->start_time_,
std::move(kineto_state_ptr->kineto_events_),
std::move(trace),
std::move(kineto_state_ptr->event_tree_));
}
return result;
}
KinetoEvent::KinetoEvent(
const std::shared_ptr<const torch::profiler::impl::Result>& result,
const bool verbose)
: result_{result} {
TORCH_INTERNAL_ASSERT(result != nullptr);
if (verbose) {
// Populate Python stack
auto parent = result_->parent_.lock();
while (parent != nullptr) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto& i) { python_stack_.push_back(parent->name()); });
parent = parent->parent_.lock();
}
}
result->visit_if_base<ExtraFields<EventType::TorchOp>>([&](const auto& op) {
auto arg_data = parseArgData(op.inputs_, op.concrete_inputs_);
shapes_ = std::move(arg_data.shapes_for_kineto_event);
dtypes_ = std::move(arg_data.dtypes);
concrete_inputs_ = std::move(arg_data.concrete_inputs);
});
}
bool KinetoEvent::isPythonFunction() const {
bool out{false};
result_->visit_if_base<PyExtraFieldsBase>([&](const auto&) { out = true; });
return out;
}
bool KinetoEvent::hasShapes() const {
return !shapes_.empty();
}
const c10::ArrayRef<std::vector<int64_t>> KinetoEvent::shapes() const {
return shapes_;
}
bool KinetoEvent::hasTypes() const {
return !dtypes_.empty();
}
const c10::ArrayRef<std::string> KinetoEvent::dtypes() const {
return dtypes_;
}
bool KinetoEvent::hasConcreteInputs() const {
return !concrete_inputs_.empty();
}
const c10::ArrayRef<c10::IValue> KinetoEvent::concreteInputs() const {
return concrete_inputs_;
}
const c10::ArrayRef<std::string> KinetoEvent::stack() const {
auto get = [&](const auto& i) -> auto& {
return !i.jit_stack_.empty() ? i.jit_stack_ : python_stack_;
};
auto const& extra_fields = result_->extra_fields_;
if (auto p = std::get_if<ExtraFields<EventType::TorchOp>>(&extra_fields)) {
return get(*p);
}
if (auto p = std::get_if<ExtraFields<EventType::Backend>>(&extra_fields)) {
return get(*p);
}
return python_stack_;
}
const c10::ArrayRef<std::string> KinetoEvent::moduleHierarchy() const {
auto const& extra_fields = result_->extra_fields_;
if (auto p = std::get_if<ExtraFields<EventType::TorchOp>>(&extra_fields)) {
return p->jit_modules_;
}
if (auto p = std::get_if<ExtraFields<EventType::Backend>>(&extra_fields)) {
return p->jit_modules_;
}
return {};
}
uint64_t KinetoEvent::durationUs() const {
return (result_->endTimeNS() - result_->start_time_ns_) / 1000;
}
int64_t KinetoEvent::debugHandle() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::TorchOp>& i) { return i.debug_handle_; },
[](const ExtraFields<EventType::Backend>& i) { return i.debug_handle_; },
[](const auto&) -> int64_t { return -1; }));
}
uint8_t KinetoEvent::deviceIndex() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::Allocation>& i) {
return static_cast<uint8_t>(i.device_index_);
},
[](const ExtraFields<EventType::OutOfMemory>& i) {
return static_cast<uint8_t>(i.device_index_);
},
[&](const auto&) {
return static_cast<uint8_t>(result_->kineto_info_.device);
}));
}
bool KinetoEvent::hasStack() const {
return !stack().empty();
}
int64_t KinetoEvent::cudaElapsedUs() const {
auto cuda_event_start = fallbackStart();
auto cuda_event_end = fallbackEnd();
if (!cuda_event_start || !cuda_event_end) {
return -1;
}
try {
return (int64_t)torch::profiler::impl::cudaStubs()->elapsed(
&cuda_event_start, &cuda_event_end);
} catch (std::exception& e) {
LOG(WARNING) << "Failed to measure time between two CUDA events. "
<< e.what();
}
return -1;
}
int64_t KinetoEvent::privateuse1ElapsedUs() const {
auto privateuse1_event_start = fallbackStart();
auto privateuse1_event_end = fallbackEnd();
if (!privateuse1_event_start || !privateuse1_event_end) {
return -1;
}
return (int64_t)torch::profiler::impl::privateuse1Stubs()->elapsed(
&privateuse1_event_start, &privateuse1_event_end);
return -1;
}
void KinetoEvent::getPerfEventCounters(std::vector<uint64_t>& in) const {
return result_->visit(c10::overloaded(
[&in](const ExtraFields<EventType::TorchOp>& e) -> void {
const size_t n = e.perf_event_counters_->size();
// should be rare
if (in.size() < n) {
in.resize(n, 0);
}
for (size_t i = 0; i < n; ++i) {
in[i] = (*e.perf_event_counters_)[i];
}
},
[](const auto&) -> void { return; }));
}
#define FORWARD_FROM_RESULT(method_name, result_expr) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
return static_cast<decltype(std::declval<KinetoEvent>().method_name())>( \
result_->result_expr); \
}
FORWARD_FROM_RESULT(startThreadId, start_tid_)
FORWARD_FROM_RESULT(endThreadId, endTID())
FORWARD_FROM_RESULT(activityType, kinetoType())
FORWARD_FROM_RESULT(name, name())
FORWARD_FROM_RESULT(deviceType, deviceType())
FORWARD_FROM_RESULT(startUs, start_time_ns_ / 1000)
FORWARD_FROM_RESULT(correlationId, correlationID())
FORWARD_FROM_RESULT(deviceResourceId, kineto_info_.resource)
#undef FORWARD_FROM_RESULT
// Most of the fields in `KinetoEvent` only make sense for a single event type.
// (Generally TorchOp.) For all other types they simply return the default
// value. This macro provides a succinct way of expressing this behavior.
#define TYPED_ATTR_WITH_DEFAULT( \
event_type, method_name, expression, default_value) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
using out_t = decltype(std::declval<KinetoEvent>().method_name()); \
return result_->visit(c10::overloaded( \
[](const ExtraFields<EventType::event_type>& e) -> out_t { \
return expression; \
}, \
[](const auto&) -> out_t { return default_value; })); \
}
#define TYPED_ATTR(event_type, method_name, expression) \
TYPED_ATTR_WITH_DEFAULT(event_type, method_name, expression, {})
TYPED_ATTR_WITH_DEFAULT(TorchOp, sequenceNr, e.sequence_number_, -1)
TYPED_ATTR(TorchOp, fwdThreadId, e.sequence_number_ >= 0 ? e.forward_tid_ : 0)
TYPED_ATTR(TorchOp, scope, static_cast<uint8_t>(e.scope_))
TYPED_ATTR(TorchOp, hasModuleHierarchy, !e.jit_modules_.empty())
TYPED_ATTR(TorchOp, isAsync, e.is_async_)
TYPED_ATTR(TorchOp, extraMeta, e.extra_meta_)
TYPED_ATTR(TorchOp, fallbackStart, e.device_fallback_.device_event_start_)
TYPED_ATTR(TorchOp, fallbackEnd, e.device_fallback_.device_event_end_)
TYPED_ATTR(
TorchOp,
flops,
!e.extra_args_.empty()
? torch::profiler::impl::computeFlops(e.name_, e.extra_args_)
: 0)
TYPED_ATTR(Backend, backend, e.backend_)
TYPED_ATTR(Allocation, nBytes, e.alloc_size_)
TYPED_ATTR(Kineto, linkedCorrelationId, [&]() {
const auto linked = e.linked_activity_.lock();
return linked ? linked->correlationID() : 0;
}())
#undef TYPED_ATTR
#undef TYPED_ATTR_WITH_DEFAULT
ProfilerResult::ProfilerResult(
uint64_t start_time,
std::vector<KinetoEvent> events,
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>&&
trace,
std::vector<experimental_event_t>&& event_tree)
: trace_start_us_(start_time),
events_(std::move(events)),
trace_(std::move(trace)),
event_tree_(std::move(event_tree)) {}
ProfilerResult::ProfilerResult() = default;
ProfilerResult::~ProfilerResult() = default;
void ProfilerResult::save(const std::string& path) {
trace_->save(path);
}
} // namespace profiler
} // namespace autograd
namespace profiler {
namespace impl {
void _reportVulkanEventToProfiler(vulkan_id_t id) {
auto state_ptr = ::torch::autograd::profiler::KinetoThreadLocalState::get(
/*global=*/false);
if (state_ptr) {
state_ptr->reportVulkanEventToProfiler(id);
}
}
} // namespace impl
} // namespace profiler
} // namespace torch