-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathevaluation.py
233 lines (181 loc) · 7.07 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
from os.path import exists, join
import json
import gzip
from argparse import ArgumentParser
import hashlib
import time
import timeit
from urllib.request import urlopen
import tarfile
import numpy as np
from sklearn.svm import LinearSVC, SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from pcanet import PCANet
from ensemble import Bagging
import utils
pickle_dir = "pickles"
def params_to_str(params):
keys = sorted(params.keys())
return "_".join([key + "_" + str(params[key]) for key in keys])
def run_classifier(X_train, X_test, y_train, y_test):
model = SVC(C=10)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
return y_test, y_pred
def run_pcanet_normal(transformer_params,
images_train, images_test, y_train, y_test):
model = PCANet(**transformer_params)
model.validate_structure()
t1 = timeit.default_timer()
model.fit(images_train)
t2 = timeit.default_timer()
train_time = t2 - t1
t1 = timeit.default_timer()
X_train = model.transform(images_train)
t2 = timeit.default_timer()
transform_time = t2 - t1
X_test = model.transform(images_test)
y_test, y_pred = run_classifier(X_train, X_test, y_train, y_test)
accuracy = accuracy_score(y_test, y_pred)
return model, accuracy, train_time, transform_time
def run_pcanet_ensemble(ensemble_params, transformer_params,
images_train, images_test, y_train, y_test):
model = Bagging(
ensemble_params["n_estimators"],
ensemble_params["sampling_ratio"],
ensemble_params["n_jobs"],
**transformer_params)
t1 = timeit.default_timer()
model.fit(images_train, y_train)
t2 = timeit.default_timer()
train_time = t2 - t1
t1 = timeit.default_timer()
y_pred = model.predict(images_test)
t2 = timeit.default_timer()
predict_time = t2 - t1
accuracy = accuracy_score(y_test, y_pred)
return model, accuracy, train_time, predict_time
def parse_args():
parser = ArgumentParser()
parser.add_argument("--image-shape", dest="image_shape", type=int,
required=True)
parser.add_argument("--filter-shape-l1", dest="filter_shape_l1", type=int,
required=True)
parser.add_argument("--step-shape-l1", dest="step_shape_l1", type=int,
required=True)
parser.add_argument("--n-l1-output", dest="n_l1_output", type=int,
required=True)
parser.add_argument("--filter-shape-l2", dest="filter_shape_l2", type=int,
required=True)
parser.add_argument("--step-shape-l2", dest="step_shape_l2", type=int,
required=True)
parser.add_argument("--n-l2-output", dest="n_l2_output", type=int,
required=True)
parser.add_argument("--filter-shape-pooling", dest="filter_shape_pooling", type=int,
required=True)
parser.add_argument("--step-shape-pooling", dest="step_shape_pooling", type=int,
required=True)
parser.add_argument("--n-estimators", dest="n_estimators", type=int,
required=True)
parser.add_argument("--sampling-ratio", dest="sampling_ratio", type=float,
required=True)
parser.add_argument("--n-jobs", dest="n_jobs", type=int,
required=True)
return parser.parse_args()
def model_filename():
t = str(time.time()).encode("utf-8")
return hashlib.sha256(t).hexdigest() + ".pkl"
def evaluate_ensemble(train_set, test_set,
ensemble_params, transformer_params):
(images_train, y_train), (images_test, y_test) = train_set, test_set
model, accuracy, train_time, predict_time = run_pcanet_ensemble(
ensemble_params, transformer_params,
images_train, images_test, y_train, y_test
)
filename = model_filename()
utils.save_model(model, join(pickle_dir, filename))
params = {}
params["ensemble-model"] = filename
params["ensemble-accuracy"] = accuracy
params["ensemble-train-time"] = train_time
params["ensemble-predict-time"] = predict_time
return params
def evaluate_normal(train_set, test_set, transformer_params):
(images_train, y_train), (images_test, y_test) = train_set, test_set
model, accuracy, train_time, transform_time = run_pcanet_normal(
transformer_params,
images_train, images_test, y_train, y_test
)
filename = model_filename()
utils.save_model(model, join(pickle_dir, filename))
params = {}
params["normal-model"] = filename
params["normal-accuracy"] = accuracy
params["normal-train-time"] = train_time
params["normal-transform-time"] = transform_time
return params
def export_json(result, filename):
with open(filename, "a") as f:
json.dump(result, f, sort_keys=True, indent=2)
def run(dataset, datasize, transformer_params, ensemble_params,
model_type, filename="result.json"):
train_set, test_set = dataset
train_set, test_set = utils.pick(
train_set, test_set,
datasize["n_train"], datasize["n_test"]
)
# Set the actual data size
datasize["n_train"], datasize["n_test"] = len(train_set[1]), len(test_set[1])
if model_type == "normal":
result = evaluate_normal(train_set, test_set, transformer_params)
elif model_type == "ensemble":
result = evaluate_ensemble(train_set, test_set,
ensemble_params, transformer_params)
else:
raise ValueError("Invalid model type '{}'".format(model_type))
params = utils.concatenate_dicts(
datasize,
transformer_params,
ensemble_params,
result
)
params["model-type"] = model_type
export_json(params, filename)
print(json.dumps(params, sort_keys=True))
def run_cifar(n_train=None, n_test=None, model_type="normal"):
datasize = {"n_train": n_train, "n_test": n_test}
transformer_params = {
"image_shape": 32,
"filter_shape_l1": 5, "step_shape_l1": 1, "n_l1_output": 16,
"filter_shape_l2": 5, "step_shape_l2": 1, "n_l2_output": 8,
"filter_shape_pooling": 8, "step_shape_pooling": 4
}
ensemble_params = {
"n_estimators" : 10,
"sampling_ratio" : 0.1,
"n_jobs" : -1
}
dataset = utils.load_cifar()
run(dataset, datasize, transformer_params, ensemble_params, model_type)
def run_mnist(n_train=None, n_test=None, model_type="normal"):
datasize = {"n_train": n_train, "n_test": n_test}
transformer_params = {
"image_shape": 28,
"filter_shape_l1": 5, "step_shape_l1": 1, "n_l1_output": 8,
"filter_shape_l2": 5, "step_shape_l2": 1, "n_l2_output": 4,
"filter_shape_pooling": 5, "step_shape_pooling": 5
}
ensemble_params = {
"n_estimators" : 40,
"sampling_ratio" : 0.03,
"n_jobs" : -1
}
dataset = utils.load_mnist()
run(dataset, datasize, transformer_params, ensemble_params, model_type)
if __name__ == "__main__":
print("MNIST")
run_mnist(n_train=100, n_test=100, model_type="ensemble")
# print("CIFAR")
# run_cifar(n_train=None, n_test=None, model_type="normal")