-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwork_with_csv.py
38 lines (32 loc) · 1.08 KB
/
work_with_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import csv
from datetime import datetime
path = r'google_stock_data.csv'
file = open(path, newline='')
reader = csv.reader(file)
header = next(reader)
# specifying the appropriate data type:
data = []
# row = [Date, Open, High, Low, Close, Volume, Adj. Close]
for row in reader:
date = datetime.strptime(row[0], '%m/%d/%Y')
open_price = float(row[1])
high = float(row[2])
low = float(row[3])
close = float(row[4])
volume = int(row[5])
adj_close = float(row[6])
data.append([date, open_price, high, low, close, volume, adj_close])
# compute and store daily stock returns:
returns_path = r'google_returns.csv'
file = open(returns_path, 'w')
writer = csv.writer(file)
writer.writerow(["Date", "Return"])
for i in range(len(data) -1):
todays_row = data[i]
todays_date = todays_row[0]
todays_price = todays_row[-1]
yesterdays_row = data[i+1]
yesterdays_price = yesterdays_row[-1]
daily_return = (todays_price - yesterdays_price) / yesterdays_price
formatted_date = todays_date.strftime('%m/%d/%Y')
writer.writerow([formatted_date, daily_return])