-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGenerate_Bio_Sim_V2.R
619 lines (439 loc) · 18.6 KB
/
Generate_Bio_Sim_V2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#### Load packages ####
library(arrow)
library(NLMR)
library(sf)
library(raster)
library(fasterize)
library(sspm)
library(rgeos)
library(tidyr)
library(readr)
library(dplyr)
library(units)
library(mgcv)
library(readr)
library(foreach)
library(doParallel)
library(parallelly)
library(ranger)
library(tidyverse)
library(kableExtra)
library(ggplot2)
library(patchwork)
library(viridis)
#### Functions needed ####
# Function: make_patches
# Purpose: Generate patches from a raster and convert them into polygons.
# Inputs: patch - Raster object representing the main landscape
# Outputs: List containing the rasterized patches and the polygon representation of patches
make_patches <- function(patch){ #,plot=F
# patch <- raster("main_L.gri")
Main_L_copy <- patch
Main_L_copy_smt <- patch
# Smooth the raster
#####Removed this step #######
# Main_L_copy_smt <- raster::focal(Main_L_copy, w=matrix(1,9,9), pad = TRUE,
# na.rm = TRUE)
# Reclass the raster
# ?reclassify
brks <- 16
rcl_matrix <- matrix(c(seq(0, 1200, length.out = brks),
c(seq(0, 1200, length.out = brks)[-1], 1400),
1:brks),
ncol=3, nrow=brks)
Main_L_copy_rcl <- reclassify(Main_L_copy_smt,
rcl_matrix)
# plot(Main_L_copy_rcl)
# Turn into polygons (sp object)
Main_L_copy_rcl_clumped <- rasterToPolygons(Main_L_copy_rcl, dissolve = TRUE)
# plot(Main_L_copy_rcl_clumped)
# Turn the sp object into sf object for easier manipulation
Main_L_copy_rcl_clumped_sf <- st_as_sf(Main_L_copy_rcl_clumped) |>
st_cast("POLYGON")
Main_L_copy_rcl_clumped_sf$area <- 0
# Calculate the area amd cretae
Main_L_copy_rcl_clumped_sf$area <- st_area(Main_L_copy_rcl_clumped_sf)
Main_L_copy_rcl_clumped_sf$bound_id <- 1:nrow(Main_L_copy_rcl_clumped_sf)
# plot(Main_L_copy_rcl_clumped)
# Identify small polygons and give them the id of their container polygon
small_polygons <- Main_L_copy_rcl_clumped_sf$bound_id[which(Main_L_copy_rcl_clumped_sf$area < 2500)]
Main_L_copy_rcl_clumped_sf_edges <- sf::st_intersects(Main_L_copy_rcl_clumped_sf)
names(Main_L_copy_rcl_clumped_sf_edges) <- Main_L_copy_rcl_clumped_sf$bound_id
# Loop to check each polygon for its size
for (i in small_polygons) {
current_polygons <- Main_L_copy_rcl_clumped_sf[Main_L_copy_rcl_clumped_sf_edges[[i]], ] %>%
dplyr::filter(.data$area == max(.data$area))
max_id <- current_polygons$bound_id
Main_L_copy_rcl_clumped_sf$bound_id[Main_L_copy_rcl_clumped_sf$bound_id == i] <- max_id
}
# Combine small polygons
Main_L_copy_rcl_clumped_sf <-
Main_L_copy_rcl_clumped_sf %>%
dplyr::group_by(.data$bound_id) %>%
dplyr::summarize() %>%
dplyr::ungroup()
# plot(Main_L_copy_rcl_clumped_sf)
# Make sure bound id is a factor (bug in sspm)
Main_L_copy_rcl_clumped_sf <- Main_L_copy_rcl_clumped_sf %>%
mutate(bound_id = as.factor(bound_id))
# plot(st_simplify(Main_L_copy_rcl_clumped_sf, dTolerance = 10)$geometry)
# using sspm to tesselate
sspm_boundary <- spm_as_boundary(boundaries = Main_L_copy_rcl_clumped_sf,
boundary = "bound_id")
# set number of strata per area as a function of size
nb_nodes_bound_id <- round(as.numeric(sspm_boundary@boundaries$area_bound_id/2500))
# This makes sure we sample the surface of the polygons at random points
voronoi <- spm_discretize(sspm_boundary, method = "tesselate_voronoi",
sample_surface = TRUE, nb_samples = nb_nodes_bound_id, min_size = 50)
# Other bug in sspm: we make sure all poygons are of the type POLUYGON and NOT MULTIPOLYGON
patches <- st_cast(st_make_valid(spm_patches(voronoi), "POLYGON"))
sf::st_bbox(patches)
sum(patches$patch_area)
# Rasterize the sf object
patches_raster <- fasterize(patches, raster = Main_L_copy, field = "patch_id")
# # Stack the rasters and turn into df values (alignment )
# the_stack <- stack(Main_L_copy, patches_raster)
# names(the_stack) <<- c("Main", "Patches")
# test <- as.data.frame(the_stack)
# plot(patches["patch_id"], main = "Strata Generation Simulation")
# hist(patches$patch_area)
return(list(patches_raster=patches_raster,patches=patches))
}
# Function: Make_patch_domain_arena_DAT
# Purpose: Generate local domain and arena files for the simulation.
# Inputs: size - Landscape dimensions
# patches - Rasterized patches
# the_stack - Stack of the main landscape and patches
# percent - Percent sampling for local domain
# c_wd - Current working directory
# Outputs: local.domain and local.arena files
Make_patch_domain_arena_DAT <- function(size=sizes,patches,the_stack,percent){
c_wd=getwd()
# Generating areas
patches_area <- patches %>%
dplyr::select(-bound_id) %>%
dplyr::rename(bound_id=patch_id, bound_area=patch_area)
# using sspm to tesselate
sspm_boundary_areas <- spm_as_boundary(boundaries = patches_area,
boundary = "bound_id")
# plot(sspm_boundary_areas)
# This makes sure we sample the surface of the polygons at random points
# 10 points per polygon
# It also does the same process than above with a min size poof 20k
sample_number_per_area <- patches_area %>%
dplyr::select(bound_id,bound_area) %>%
mutate(samples=as.numeric(round(bound_area/(1/(percent/100))))) %>% # sets # of samples to % of original data
mutate(samples = replace(samples, samples<3, 3)) # Make sure each strata has 3 or more samples.
sample_vector <- sample_number_per_area$samples
names(sample_vector)=sample_number_per_area$bound_id
voronoi_areas <- spm_discretize(sspm_boundary_areas, method = "tesselate_voronoi",
sample_surface = TRUE, nb_samples = sample_vector, min_size = 1)
# Other bug in sspm: we make sure all poygons are of the type POLUYGON and NOT MULTIPOLYGON
patches_area <- st_cast(st_make_valid(spm_patches(voronoi_areas), "POLYGON"))
# plot(patches_area$geometry)
points_area <- spm_points(voronoi_areas)
# plot(spm_points(voronoi_areas)$geometry)
points_area_join <- st_join(points_area,patches_area)
coord_area <- as.data.frame(st_coordinates(points_area_join))
names(coord_area) <- c("x","y")
points_area_coord <- points_area_join %>%
bind_cols(coord_area) %>%
st_drop_geometry() %>%
dplyr::select(patch_id,bound_id.x,patch_area,x,y)
points_area_coord$bound_id.x <- substring(points_area_coord$bound_id.x, 2)
points_area_coord
# Extracting depth for local.domain
coord_areas <- data.frame(points_area_coord$x,points_area_coord$y)
coord_areas_depth <- data.frame(coord_areas,raster::extract(the_stack,coord_areas))
# Create local.domain file
local.domain <- data.frame(lat =points_area_coord$x,
long = points_area_coord$y,
rootdepth = sqrt(coord_areas_depth$Main),
stratum = points_area_coord$bound_id.x,
depth = coord_areas_depth$Main,
NAFO = rep("3K", nrow(points_area_coord)),
SFA = rep(6,nrow(points_area_coord)),
area = points_area_coord$patch_area
)
round_df <- function(x, digits) {
# round all numeric variables
# x: data frame
# digits: number of digits to round
numeric_columns <- sapply(x, mode) == 'numeric'
x[numeric_columns] <- round(x[numeric_columns], digits)
x
}
local.domain <- round_df(local.domain,4)
write.table(local.domain, file = paste0(c_wd,"/","local.domain"),sep = " ", quote = F, row.names = F )
write.table(local.domain, file = paste0(c_wd,"/","local.arena"),sep = " ", quote = F, row.names = F )
# Generate data file PB_fall.dat
# 1. Get all simulation data
# Get files names
f_list <- list.files(paste0(c_wd,"/","sim"))
# Load sim data
output <- list()
for (i in f_list) {
output[[i]] <- read_parquet(file = paste0(c_wd,"/","sim/",i))
read_parquet(paste0("sim/",i))
}
# Write sim data
listOfDataFrames<- list()
for (i in f_list) {
listOfDataFrames[[i]] <- data.frame(
year= rep(1990+as.numeric(substring(i,4)),((size-1)^2)),
lat = output[[i]][["x"]],
long = output[[i]][["y"]],
temp = output[[i]][["temperature"]],
depth = output[[i]][["depth"]],
NAFO = rep("3K", ((size-1)^2)),
sfa = rep(6,((size-1)^2)),
stratum = output[[i]][["stratum"]],
biomass=(output[[i]][["biomass"]])
)
}
df <- do.call("rbind", listOfDataFrames)
df <- round_df(df,4)
#write.table(df, file = "PB_fall.dat.complete",sep = " ", quote = F, row.names = F )
write_parquet(df, paste0(c_wd,"/","PB_fall.dat.complete"))
}
# Function: Make_PB_fall.dat
# Purpose: Generate the PB_fall.dat file for the simulation.
# Inputs: percent_f - Percent sampling for PB_fall.dat
# path - Path to the complete PB_fall.dat file
# fname - Name of the generated PB_fall.dat file
# c_wd - Current working directory
# Outputs: PB_fall.dat file
Make_PB_fall.dat <- function(percent_f=0.025,path="PB_fall.dat.complete",fname="PB_fall.dat"){
c_wd=getwd()
F_data <- arrow::read_parquet(paste0(c_wd,"/","PB_fall.dat.complete"))
propotion_strata <- F_data %>%
dplyr::group_by(stratum, year) %>%
dplyr::summarize(n = n()) %>%
dplyr::mutate(prop = round(ifelse(n * percent_f <= 3, 3, n * percent_f)))
S_data <- F_data %>%
dplyr::left_join(propotion_strata, by = c("stratum", "year")) %>%
dplyr::group_by(stratum, year) %>%
dplyr::group_split() %>%
purrr::map_dfr(~ dplyr::slice_sample(.x, n = min(.x$prop[1], nrow(.x)), replace = FALSE)) %>%
dplyr::ungroup()
# S_data$biomass <- abs(rTweedie((S_data$biomass), p = 1.76, phi = 2))
S_data$biomass <- rTweedie((S_data$biomass), p = 1.76, phi = 2)
# S_data <- return(S_data)
write.table(S_data, file = paste0(c_wd,"/",fname),sep = " ", quote = F, row.names = F )
gc()
}
# Function: s_land_bio_sim_V2
# Purpose: Simulate a landscape with depth, temperature, and biomass variations.
# Inputs: cwd - Current working directory
# size - Landscape dimensions
# n - Number of years/simulations
# roughness - Main nlm_mpd roughness
# V - Variation parameter
# Outputs: Simulations + List containing the stack of the main landscape and patches
s_land_bio_sim_V2 <- function(size=size.,n=n.,roughness=roughness.,V=V.) {
cwd=getwd()
x=y=size
#### 1. Generate base Landscape ####
message("1. Generate base Landscape")
Main_L <- nlm_mpd(ncol = size, nrow = size, roughness = roughness)*nlm_mpd(ncol = size, nrow = size, roughness = roughness)*nlm_mpd(ncol = size, nrow = size, roughness = roughness)
plot(Main_L)
#### 1.B Generate secondary landscapes which will be used to vary temperature.####
message("1.B Generate secondary landscapes which will be used to vary temperature.")
list_x <- rep(x-1, n)
list_y <- rep(y-1, n)
Sub_L_M <- mapply(FUN = nlm_gaussianfield,
ncol = list_x, nrow = list_y,
resolution = 1,
autocorr_range = 1,
mag_var = 5,
nug = 0.2,
mean = 0.5)
#### 1.C Generate secondary depths which will be used to generate alternate temperatures for the different years ####
for(i in 1:n){
Sub_L_M[[i]] <- (Main_L + (Sub_L_M[[i]]/10))/2
}
# plot(Sub_L_M[[1]])
#### 2. Create Depth patches ####
message("2. Create Depth patches")
# Add patches of depth variation
depth_patch_variation <- nlm_randomcluster(ncol = size-1, nrow = size-1,
p = 0.57,
ai = c(0.6, 0.13, 0.13, 0.13))
# plot(depth_patch_variation)
# show_landscape(depth_patch_variation)
# Smooth depth
depth_patch_variation <- (focal(depth_patch_variation, w=focalWeight(depth_patch_variation,15,type = "circle"), sum, pad=T, padValue=0))
# show_landscape(depth_patch_variation)
depth_patch_variation <- reclassify(depth_patch_variation, cbind(0, 0.3, 0))
# show_landscape(depth_patch_variation)
for(i in 1:n){
Sub_L_M[[i]] <- (exp(depth_patch_variation*V))*Sub_L_M[[i]]@data@values
}
# Adjusting the mean of "depth" in Sub_L_M
desired_mean_depth <- 200
Sub_L_M_df_list <- list()
for(i in 1:n){
print(paste0("Sub_L_M","_df_",i))
Sub_L_M[[i]]@data@values <- (Sub_L_M[[i]]@data@values*1126)+58
temp_df <- as.data.frame(Sub_L_M[[i]], xy = TRUE)
# Rename the 3rd column
names(temp_df)[3] <- "depth"
original_mean_depth <- mean(temp_df$depth)
temp_df$depth <- temp_df$depth + desired_mean_depth - original_mean_depth
Sub_L_M_df_list[[i]] <- temp_df
}
#### 4. Generate Temperature ####
message("4. Generate Temperature")
# Predict the temperature from depth
for(i in 1:n){
Sub_L_M_df_list[[i]]$temperature <- predict(gam_depth_sim, newdata = Sub_L_M_df_list[[i]], se.fit = T)$fit
}
#### 5. Generate Biomass ####
message("5. Generate Biomass")
# Biomass parameters #
depth_sd = 200
temp_sd = 2
scale_depth <- dnorm(0,0,depth_sd)
scale_temp <- dnorm(0,0,2)
for(i in 1:n){
Sub_L_M_df_list[[i]]$biomass <- dnorm((Sub_L_M_df_list[[i]]$depth - 312.5), 0, 100)/dnorm(0,0,100)*dnorm((Sub_L_M_df_list[[i]]$temperature - 2.916), 0, 2)/dnorm(0,0,2)
}
#### 7. Generate stratums
# Stack the rasters and turn into df values (alignment )
patches_list <- make_patches(patch=Main_L)
# Stack the rasters and turn into df values (alignment )
the_stack <- stack(Main_L, patches_list$patches_raster)
names(the_stack) <- c("Main", "Patches")
stratum = values(patches_list$patches_raster)
add_stratum_column <- function(df, stratum) {
df$stratum <- stratum
return(df)
}
for(i in 1:n){
Sub_L_M_df_list[[i]] <- add_stratum_column(Sub_L_M_df_list[[i]], stratum)
}
#### 8. Assemble and store the data ####
#Get all the necessary data into a single list
message("8. Assemble and store the data")
for (i in 1:n) {
year = 1990+i
Sub_L_M_df_list[[i]]$year <- year
}
#write the files individually
dir.create(paste0(cwd,"/","sim"))
for (i in 1:n) {
write_parquet(Sub_L_M_df_list[[i]],paste0(cwd,"/","sim/sim",i))
}
stack_patch <- list(the_stack=the_stack,patches_list=patches_list)
return(stack_patch)
}
# Function: STRAP
# Purpose: Perform the STRAP estimation
# Inputs: fname - Filename for the STRAP estimate
# c_wd - Current working directory
# Outputs: STRAP estimate saved as a Parquet file
STRAP <- function(fname = "Strap_estimate") {
c_wd <- getwd()
# Load data
F_data <- arrow::read_parquet(paste0(c_wd, "/PB_fall.dat.complete"))
# Calculate biomass by year
biomass_year <- F_data %>%
dplyr::group_by(year) %>%
dplyr::select(biomass, year) %>%
dplyr::summarise(t_bio = sum(biomass))
# Load survey_raw_data and patches
survey_raw_data <- read_table(paste0(c_wd, "/", "PB_fall.dat"))
patches <- read_parquet(paste0(c_wd, "/", "patches"))
# Calculate strata_area
strata_area <- patches %>%
dplyr::mutate(stratum = as.numeric(patch_id)) %>%
units::drop_units() %>%
dplyr::select(stratum, patch_area)
# 2. Merge the area and survey data
Survey_W_Area <- left_join(survey_raw_data, strata_area)
# 3. Run strap calculation
Strap_estimate <- Survey_W_Area %>%
dplyr::group_by(year, stratum) %>%
dplyr::mutate(biomass = biomass / 1000) %>%
dplyr::filter(!is.na(patch_area) & !is.na(biomass)) %>% # filter out missing values
dplyr::summarize(Bj = patch_area * mean(biomass),
s2j = (patch_area^2) * var(biomass) / (n())) %>%
dplyr::distinct(year, stratum, .keep_all = TRUE) %>%
dplyr::group_by(year) %>%
dplyr::summarize(B_total = sum(Bj), B_se = sqrt(sum(s2j))) %>%
dplyr::mutate(lower = B_total - 1.96 * B_se,
upper = B_total + 1.96 * B_se)
# 4. Save the data
# Join the data
Strap_estimate <- left_join(Strap_estimate, biomass_year)
# Write the data
write_parquet(Strap_estimate, paste0(c_wd, "/", fname))
}
#### Load model ####
gam_depth_sim <- readRDS("gam_depth_sim.rds")
#### Set Simulation Parameters ####
# Working Directory
cwd. = getwd()
# Landscape dimensions
size. <- as.numeric(Sys.getenv('SIZE')) # 500
# Set Main nlm_mpd roughness
roughness.<- as.numeric(Sys.getenv('ROUGHNESS')) # 0.6
# Number of years/simulations
n. <- as.numeric(Sys.getenv('YEARS')) # 200
# Vairation
V. <- as.numeric(Sys.getenv('VARIATION')) # 1
# Number of Replicates
reps <- as.numeric(Sys.getenv('REPS')) # 150
# Percent Sampling
percent. <- as.numeric(Sys.getenv('PERCENT')) # 0.025
# Seed
seed = sample((1:50000),1)
#### 1. Create and Start Cluster ####
#create the cluster
# n.cores <- parallelly::availableCores()/2
# For windows
n.cores <- as.numeric(Sys.getenv('OMP_NUM_THREADS'))
main.cluster <- parallel::makeCluster(
n.cores,
type = "PSOCK"
)
#check cluster definition (optional)
print(main.cluster)
#register it to be used by %dopar%
doParallel::registerDoParallel(cl = main.cluster)
#check if it is registered (optional)
foreach::getDoParRegistered()
#how many workers are available? (optional)
foreach::getDoParWorkers()
print(getwd())
# Store the main directory before the loop
main_dir <- getwd()
foreach(
rep = 1:reps,
.packages = c('mgcv','dplyr','purrr','NLMR','arrow','sspm','raster','foreach','doParallel','parallelly','readr','fasterize','units')
) %dopar% {
print(paste("Replicate #", rep))
seeds <- seed - 1 + rep
set.seed(seeds)
newdir <- paste("Run", rep, "Size", size., "seed", seeds, "nsim", n., "Percent", percent., Sys.Date(), sep = "_")
dir.create(newdir) # Create new directory
setwd(newdir)
write.table(as.data.frame(newdir), "seed")
#### 1. Run the sim ####
results <- s_land_bio_sim_V2()
# Save size of each strata
patches <- results$patches_list$patches
patches <- st_set_geometry(patches, NULL)
write_parquet(patches, "patches")
#### 2. Write the ogmap files ####
Make_patch_domain_arena_DAT(size = size., patches = results$patches_list$patches, the_stack = results$the_stack, percent = percent.)
#### 3. Make Survey ####
Make_PB_fall.dat()
#### 4. Run STRAP ####
STRAP()
#### 6. Return to Main Directory ####
setwd(main_dir) # Reset working directory to the main directory
gc()
}
#### Kill the cluster
parallel::stopCluster(cl = main.cluster)