-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathupload_to_hub.py
55 lines (37 loc) · 1.63 KB
/
upload_to_hub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import numpy as np
import hub
from utils.fsdd import FSDD
from tqdm import tqdm
DATASET_URI = "./mnist_audio"
# DATASET_URI = "hub://activeloop/spoken_mnist"
SPECTROGRAMS_DIR = "./spectrograms"
WAVS_DIR = "./recordings"
with open("README.md", encoding="utf-8") as f:
readme_description = f.read()
if __name__ == "__main__":
ds = hub.empty(DATASET_URI, overwrite=True)
ds.info.update({
"title": "Spoken Digit Dataset",
"citation": "https://github.com/Jakobovski/free-spoken-digit-dataset",
"description": readme_description,
})
ds.create_tensor("spectrograms", htype="image", chunk_compression="png")
ds.create_tensor("labels", htype="class_label")
ds.create_tensor("audio", htype="audio", sample_compression="wav")
ds.create_tensor("speakers", htype="text")
with ds:
gen = FSDD.get_spectrograms(SPECTROGRAMS_DIR)
num = len(os.listdir(SPECTROGRAMS_DIR))
for _, label, spectrogram_path in tqdm(gen, total=num, desc="uploading to hub"):
filename_no_ext = os.path.basename(spectrogram_path).split(".")[0]
speaker_name = filename_no_ext.split("_")[1]
wav_path = os.path.join(WAVS_DIR, filename_no_ext + ".wav")
if not os.path.exists(wav_path):
raise Exception("Missing audio file: {}".format(wav_path))
ds.spectrograms.append(hub.read(spectrogram_path))
ds.audio.append(hub.read(wav_path))
ds.labels.append(np.uint32(label))
ds.speakers.append(str(speaker_name))
print(f'dataset was successfully uploaded to {DATASET_URI}.')
print(ds)