forked from MetaGLM/FinGLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
408 lines (353 loc) · 19.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# coding=utf-8
import json
import sys
import re
from text2vec import SentenceModel, semantic_search, Similarity
# 错误字典,这里只是示例
error_msg = {
'TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]': "answer format error",
}
def dump_2_json(info, path):
with open(path, 'w') as output_json_file:
json.dump(info, output_json_file)
def report_error_msg(detail, showMsg, out_p):
error_dict = dict()
error_dict['errorDetail'] = detail
error_dict['errorMsg'] = showMsg
error_dict['score'] = 0
error_dict['scoreJson'] = {}
error_dict['success'] = False
dump_2_json(error_dict, out_p)
def report_score(score, scorejson, out_p):
result = dict()
result['success'] = True
result['score'] = score
# 这里{}里面的score注意保留,但可以增加其他key,比如这样:
# result['scoreJson'] = {'score': score, 'aaaa': 0.1}
result['scoreJson'] = scorejson
dump_2_json(result, out_p)
class countScore():
def __init__(self):
self.sys_path = standard_path # 答案文件路径
self.simModel_path = 'text2vec-base-chinese' # 相似度模型路径
self.simModel = SentenceModel(model_name_or_path=self.simModel_path, device='cuda:0')
self.sys_data_list = [json.loads(line.replace('\n', '')) for line in
open(self.sys_path, 'r', encoding='utf-8').readlines() if line != '\n']
self.type1IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '1']
self.type12IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '1-2']
self.type2IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '2-1']
self.type22IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '2-2']
self.type31IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '3-1']
self.type32IdList = [dt['id'] for dt in self.sys_data_list if dt['type'] == '3-2']
self.sys_data_type1_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '1']
self.sys_data_type1_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '1']
self.sys_data_type12_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '1-2']
self.sys_data_type12_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '1-2']
self.sys_data_type2_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '2-1']
self.sys_data_type2_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '2-1']
self.sys_data_type22_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '2-2']
self.sys_data_type22_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '2-2']
self.sys_data_type31_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '3-1']
self.sys_data_type31_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '3-1']
self.sys_data_type32_list = [tmp_line for tmp_line in self.sys_data_list if tmp_line['type'] == '3-2']
self.sys_data_type32_question_list = [tmp_line['question'] for tmp_line in self.sys_data_list if
tmp_line['type'] == '3-2']
def check_type1(self, per_data_type1_list):
score_type1 = 0
for i in range(len(self.sys_data_type1_list)):
per_data_json = per_data_type1_list[i]
sys_data_json = self.sys_data_type1_list[i]
prompt = sys_data_json['prompt']
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
key_word = prompt['key_word']
year = prompt['year']
if key_word != '无|不|没有|未|否|非|莫|抱歉|毋':
key_value = prompt[key_word].replace(',', '').replace(' ', '')
if key_value in per_answer:
score_type1 += 0.25
score_type1 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if key_word in per_answer and year in per_answer:
score_type1 += 0.25
else:
key_word_list = key_word.split('|')
Flag = False
for kword in key_word_list:
if kword in per_answer:
Flag = True
break
if Flag is True:
score_type1 += 0.25
score_type1 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if year in per_answer:
score_type1 += 0.25
return score_type1
def check_type12(self, per_data_type12_list):
score_type12 = 0
for i in range(len(self.sys_data_type12_list)):
per_data_json = per_data_type12_list[i]
sys_data_json = self.sys_data_type12_list[i]
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
prompt = sys_data_json['prompt']
year = prompt['year']
key_word = prompt['key_word']
if key_word != '无|不|没有|未|否|非|莫|抱歉|毋':
key_word_list = prompt['key_word'].split('、')
tmp_value_count = 0
tmp_key_count = 0
for key_word in key_word_list:
if prompt[key_word].replace(',', '').replace(' ', '') in per_answer:
tmp_value_count += 1
if key_word in per_answer:
tmp_key_count += 1
if tmp_value_count == len(key_word_list):
score_type12 += 0.25
score_type12 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if tmp_key_count == len(key_word_list) and year in per_answer:
score_type12 += 0.25
else:
key_word_list = key_word.split('|')
Flag = False
for kword in key_word_list:
if kword in per_answer:
Flag = True
break
if Flag is True:
score_type12 += 0.25
score_type12 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if year in per_answer:
score_type12 += 0.25
return score_type12
def check_type2(self, per_data_type2_list):
score_type2 = 0
for i in range(len(self.sys_data_type2_list)):
per_data_json = per_data_type2_list[i]
sys_data_json = self.sys_data_type2_list[i]
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
prompt = sys_data_json['prompt']
year = prompt['year']
key_word = prompt['key_word']
if key_word != '无|不|没有|未|否|非|莫|抱歉|毋':
key_word_list = prompt['key_word'].split('、')
key_value = prompt['prom_answer'].replace(',', '').replace(' ', '')
tmp_key_count = 0
tmp_key_value_count = 0
for key_word in key_word_list:
if key_word in per_answer:
tmp_key_count += 1
if prompt[key_word].replace(',', '').replace(' ', '') in per_answer:
tmp_key_value_count += 1
tmp_count = tmp_key_count + tmp_key_value_count
if key_value in per_answer:
score_type2 += 0.25
score_type2 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if tmp_count == len(key_word_list) * 2 and year in per_answer:
score_type2 += 0.25
else:
key_word_list = key_word.split('|')
Flag = False
for kword in key_word_list:
if kword in per_answer:
Flag = True
break
if Flag is True:
score_type2 += 0.25
score_type2 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if year in per_answer:
score_type2 += 0.25
return score_type2
def check_type22(self, per_data_type22_list):
score_type22 = 0
for i in range(len(self.sys_data_type22_list)):
per_data_json = per_data_type22_list[i]
sys_data_json = self.sys_data_type22_list[i]
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
prompt = sys_data_json['prompt']
key_word = prompt['key_word']
year = prompt['year']
if key_word != '无|不|没有|未|否|非|莫|抱歉|毋':
key_word_list = prompt['key_word'].split('、')
key_value = prompt['prom_answer'].replace(',', '').replace(' ', '')
tmp_count = 0
for key_word in key_word_list:
if prompt[key_word].replace(',', '').replace(' ', '') in per_answer:
tmp_count += 1
if key_value == '相同' and key_value in per_answer and '不相同' not in per_answer:
score_type22 += 0.25
score_type22 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if tmp_count == len(key_word_list):
score_type22 += 0.25
elif key_value == '不相同' and key_value in per_answer:
score_type22 += 0.25
score_type22 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if tmp_count == len(key_word_list):
score_type22 += 0.25
else:
key_word_list = key_word.split('|')
Flag = False
for kword in key_word_list:
if kword in per_answer:
Flag = True
break
if Flag is True:
score_type22 += 0.25
score_type22 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][
0]['score'] * 0.5
if year in per_answer:
score_type22 += 0.25
return score_type22
def check_type31(self, per_data_type31_list):
score_type31 = 0
for i in range(len(self.sys_data_type31_list)):
per_data_json = per_data_type31_list[i]
sys_data_json = self.sys_data_type31_list[i]
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
year = sys_data_json['prompt']['year']
key_word = sys_data_json['prompt']['key_word']
if key_word == '':
score_type31 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][0][
'score']
elif key_word == '无|不|没有|未|否|非|莫|抱歉|毋':
key_word_list = key_word.split('|')
Flag = False
for kword in key_word_list:
if kword in per_answer:
Flag = True
break
if Flag is True:
score_type31 += 0.25
score_type31 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][0]['score'] * 0.5
if year in per_answer:
score_type31 += 0.25
else:
key_word_list = key_word.split('、')
key_length = len(key_word_list)
tm_len = 0
for t_key in key_word_list:
if re.search(t_key, per_answer):
tm_len += 1
if tm_len == key_length:
score_type31 += 0.25
score_type31 += semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][0]['score'] * 0.75
else:
score_type31 += semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][0]['score'] * 0.75
return score_type31
def check_type32(self, per_data_type32_list):
score_type32 = 0
for i in range(len(self.sys_data_type32_list)):
per_data_json = per_data_type32_list[i]
sys_data_json = self.sys_data_type32_list[i]
sys_answer = [x.replace(',', '').replace(' ', '') for x in sys_data_json['answer']]
per_answer = per_data_json['answer'].replace(',', '').replace(' ', '')
score_type32 += \
semantic_search(self.simModel.encode([per_answer]), self.simModel.encode(sys_answer), top_k=1)[0][0][
'score']
return score_type32
def count(self, Per_path):
per_data_list = [json.loads(line.replace('\n', '')) for line in
open(Per_path, 'r', encoding='utf-8').readlines() if line != '\n']
answer_empty_count = 0
for p_data_json in per_data_list:
if isinstance(p_data_json['answer'], list):
raise ValueError('The type of answer must be list')
elif len(p_data_json['answer']) == 0:
answer_empty_count += 1
if len(per_data_list) != len(self.sys_data_list):
raise ValueError('The length of your data is not correct')
elif answer_empty_count == len(self.sys_data_list):
raise ValueError('All your answers are empty')
else:
per_data_type1_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type1IdList and tmp_line[
'question'] in self.sys_data_type1_question_list]
per_data_type12_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type12IdList and tmp_line[
'question'] in self.sys_data_type12_question_list]
per_data_type2_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type2IdList and tmp_line[
'question'] in self.sys_data_type2_question_list]
per_data_type22_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type22IdList and tmp_line[
'question'] in self.sys_data_type22_question_list]
per_data_type31_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type31IdList and tmp_line[
'question'] in self.sys_data_type31_question_list]
per_data_type32_list = [tmp_line for tmp_line in per_data_list if
tmp_line['id'] in self.type32IdList and tmp_line[
'question'] in self.sys_data_type32_question_list]
if len(per_data_type1_list) != len(self.sys_data_type1_list) or \
len(per_data_type12_list) != len(self.sys_data_type12_list) or \
len(per_data_type2_list) != len(self.sys_data_type2_list) or \
len(per_data_type22_list) != len(self.sys_data_type22_list) or \
len(per_data_type31_list) != len(self.sys_data_type31_list) or \
len(per_data_type32_list) != len(self.sys_data_type32_list):
raise ValueError('Your data location is inconsistent with the source data')
else:
type1Score = self.check_type1(per_data_type1_list)
type12Score = self.check_type12(per_data_type12_list)
type2Score = self.check_type2(per_data_type2_list)
type22Score = self.check_type22(per_data_type22_list)
type31Score = self.check_type31(per_data_type31_list)
type32Score = self.check_type32(per_data_type32_list)
Score1 = round((type1Score + type12Score) / (len(self.type1IdList) + len(self.type12IdList)) * 100, 4)
Score2 = round((type2Score + type22Score) / (len(self.type2IdList) + len(self.type22IdList)) * 100, 4)
Score3_1 = round(type31Score / len(self.type31IdList) * 100, 4)
Score3_2 = round(type32Score / len(self.type32IdList) * 100, 4)
Score_dict = {'type1Score': Score1, 'type2Score': Score2, 'type3-1Score': Score3_1,
'type3-2Score': Score3_2}
finalScore = round((Score1 * 0.3 + Score2 * 0.4 + Score3_1 * 0.2 + Score3_2 * 0.1), 4)
Score_dict['score'] = finalScore
return finalScore, Score_dict
if __name__ == "__main__":
'''
online evaluation
'''
in_param_path = sys.argv[1]
out_path = sys.argv[2]
# in_param_path = 'input_param.json'
# out_path = 'output.json'
# read submit and answer file from first parameter
with open(in_param_path, 'r') as load_f:
input_params = json.load(load_f)
# 标准答案路径
standard_path = input_params["fileData"]["standardFilePath"]
print("Read standard from %s" % standard_path)
# 选手提交的结果文件路径
submit_path = input_params["fileData"]["userFilePath"]
print("Read user submit file from %s" % submit_path)
try:
score, score_json = countScore().count(submit_path)
report_score(score, score_json, out_path)
except Exception as e:
if str(e.args) in error_msg:
report_error_msg(error_msg[str(e.args)], error_msg[str(e.args)], out_path)
else:
report_error_msg(str(e.args), str(e.args), out_path)