forked from xmweijh/CommunityDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLPA.py
217 lines (195 loc) · 8.69 KB
/
SLPA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import collections
import time
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
class SLPA:
def __init__(self, G, T, r):
"""
:param G:图本省
:param T: 迭代次数T
:param r:满足社区次数要求的阈值r
"""
self._G = G
self._n = len(G.nodes(False)) # 节点数目
self._T = T
self._r = r
def execute(self):
# 将图中数据录入到数据字典中以便使用
weight = {j: {} for j in self._G.nodes()}
for q in weight.keys():
for m in self._G[q].keys():
# weight[q][m] = self._G[q][m]['weight']
weight[q][m] = 1
# 建立成员标签记录 初始本身标签为1
memory = {i: {i: 1} for i in self._G.nodes()}
# 开始遍历T次所有节点
for t in range(self._T):
listenerslist = list(self._G.nodes())
# 随机排列遍历顺序
np.random.shuffle(listenerslist)
# 开始遍历节点
for listener in listenerslist:
# 每个节点的key就是与他相连的节点标签名
# speakerlist = self._G[listener].keys()
labels = collections.defaultdict(int)
# 遍历所有与其相关联的节点
for speaker in self._G.neighbors(listener):
total = float(sum(memory[speaker].values()))
# 查看speaker中memory中出现概率最大的标签并记录,key是标签名,value是Listener与speaker之间的权
# multinomial从多项式分布中提取样本。
# 多项式分布是二项式分布的多元推广。做一个有P个可能结果的实验。这种实验的一个例子是掷骰子,结果可以是1到6。
# 从分布图中提取的每个样本代表n个这样的实验。其值x_i = [x_0,x_1,…,x_p] 表示结果为i的次数。
# 函数语法
# numpy.random.multinomial(n, pvals, size=None)
#
# 参数
# n : int:实验次数
# pvals:浮点数序列,长度p。P个不同结果的概率。这些值应该和为1(但是,只要求和(pvals[:-1])<=1,最后一个元素总是被假定为考虑剩余的概率)。
# size : int 或 int的元组,可选。 输出形状。如果给定形状为(m,n,k),则绘制 m*n*k 样本。默认值为无,在这种情况下返回单个值。
labels[list(memory[speaker].keys())[
np.random.multinomial(1, [freq / total for freq in memory[speaker].values()]).argmax()]] += \
weight[listener][speaker]
# 查看labels中值最大的标签,让其成为当前listener的一个记录
maxlabel = max(labels, key=labels.get)
if maxlabel in memory[listener]:
memory[listener][maxlabel] += 1
else:
memory[listener][maxlabel] = 1.5
# 提取出每个节点memory中记录标签出现最多的一个
# for primary in memory:
# p = list(memory[primary].keys())[
# np.random.multinomial(1, [freq / total for freq in memory[primary].values()]).argmax()]
# memory[primary] = {p: memory[primary][p]}
for m in memory.values():
sum_label = sum(m.values())
threshold_num = sum_label * self._r
for k, v in list(m.items()):
if v < threshold_num:
del m[k]
communities = collections.defaultdict(lambda: list())
# 扫描memory中的记录标签,相同标签的节点加入同一个社区中
for primary, change in memory.items():
for label in change.keys():
communities[label].append(primary)
# 返回值是个数据字典,value以集合的形式存在
return communities.values()
def cal_Q(partition, G): # 计算Q
m = len(G.edges(None, False)) # 如果为真,则返回3元组(u、v、ddict)中的边缘属性dict。如果为false,则返回2元组(u,v)
# print(G.edges(None,False))
# print("=======6666666")
a = []
e = []
for community in partition: # 把每一个联通子图拿出来
t = 0.0
for node in community: # 找出联通子图的每一个顶点
t += len([x for x in G.neighbors(node)]) # G.neighbors(node)找node节点的邻接节点
a.append(t / (2 * m))
# self.zidian[t/(2*m)]=community
for community in partition:
t = 0.0
for i in range(len(community)):
for j in range(len(community)):
if (G.has_edge(community[i], community[j])):
t += 1.0
e.append(t / (2 * m))
q = 0.0
for ei, ai in zip(e, a):
q += (ei - ai ** 2)
return q
# 可视化划分结果
def showCommunity(G, partition, pos):
# 划分在同一个社区的用一个符号表示,不同社区之间的边用黑色粗体
cluster = {}
labels = {}
for index, item in enumerate(partition):
for nodeID in item:
labels[nodeID] = r'$' + str(nodeID) + '$' # 设置可视化label
cluster[nodeID] = index # 节点分区号
# 可视化节点
colors = ['r', 'g', 'b', 'y', 'm']
shapes = ['v', 'D', 'o', '^', '<']
for index, item in enumerate(partition):
nx.draw_networkx_nodes(G, pos, nodelist=item,
node_color=colors[index],
node_shape=shapes[index],
node_size=350,
alpha=1)
# 可视化边
edges = {len(partition): []}
for link in G.edges():
# cluster间的link
if cluster[link[0]] != cluster[link[1]]:
edges[len(partition)].append(link)
else:
# cluster内的link
if cluster[link[0]] not in edges:
edges[cluster[link[0]]] = [link]
else:
edges[cluster[link[0]]].append(link)
for index, edgelist in enumerate(edges.values()):
# cluster内
if index < len(partition):
nx.draw_networkx_edges(G, pos,
edgelist=edgelist,
width=1, alpha=0.8, edge_color=colors[index])
else:
# cluster间
nx.draw_networkx_edges(G, pos,
edgelist=edgelist,
width=3, alpha=0.8, edge_color=colors[index])
# 可视化label
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plt.axis('off')
plt.show()
def cal_EQ(cover, G):
m = len(G.edges(None, False)) # 如果为真,则返回3元组(u、v、ddict)中的边缘属性dict。如果为false,则返回2元组(u,v)
# 存储每个节点所在的社区
vertex_community = collections.defaultdict(lambda: set())
# i为社区编号(第几个社区) c为该社区中拥有的节点
for i, c in enumerate(cover):
# v为社区中的某一个节点
for v in c:
# 根据节点v统计他所在的社区i有哪些
vertex_community[v].add(i)
total = 0.0
for c in cover:
for i in c:
# o_i表示i节点所同时属于的社区数目
o_i = len(vertex_community[i])
# k_i表示i节点的度数(所关联的边数)
k_i = len(G[i])
for j in c:
t = 0.0
# o_j表示j节点所同时属于的社区数目
o_j = len(vertex_community[j])
# k_j表示j节点的度数(所关联的边数)
k_j = len(G[j])
if G.has_edge(i, j):
t += 1.0 / (o_i * o_j)
t -= k_i * k_j / (2 * m * o_i * o_j)
total += t
return round(total / (2 * m), 4)
def load_graph(path):
G = nx.Graph()
with open(path, 'r') as text:
for line in text:
vertices = line.strip().split(' ')
source = int(vertices[0])
target = int(vertices[1])
G.add_edge(source, target)
return G
if __name__ == '__main__':
# G = nx.karate_club_graph()
# pos = nx.spring_layout(G)
G = load_graph('data/dolphin.txt')
start_time = time.time()
algorithm = SLPA(G, 20, 0.5)
communities = algorithm.execute()
end_time = time.time()
for community in communities:
print(community)
print(cal_EQ(communities, G))
# 可视化结果
# showCommunity(G, communities, pos)
print(f'算法执行时间{end_time - start_time}')