-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprisoners-dilemma-lob.lagda
290 lines (265 loc) Β· 11 KB
/
prisoners-dilemma-lob.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
\section{Encoding of \texorpdfstring{L\"ob}{Lӧb}'s Theorem for the Prisoner's Dilemma} \label{sec:prisoners-dilemma-lob-encoding}
\AgdaHide{
\begin{code}
module prisoners-dilemma-lob where
open import common
\end{code}
}
\begin{code}
module lob where
infixl 2 _β»_
infixl 3 _ββ_
infixr 1 _βββ_
infixr 1 _βββββ_
infixr 1 _βββββ_
infixl 3 _βββ_
infixl 3 _wβββββ_
infixr 2 _βββ_
infixr 2 _βΓβ_
infixr 2 _ββΓββ_
infixr 2 _wββΓββ_
mutual
data Context : Set where
Ξ΅ : Context
_β»_ : (Ξ : Context) β Type Ξ β Context
data Type : Context β Set where
ββ€β : β {Ξ} β Type Ξ
ββ₯β : β {Ξ} β Type Ξ
_βββ_ : β {Ξ} β Type Ξ β Type Ξ β Type Ξ
_βΓβ_ : β {Ξ} β Type Ξ β Type Ξ β Type Ξ
βTypeβ : β Ξ β Type Ξ
βTermβ : β {Ξ} β Type (Ξ β» βTypeβ Ξ)
Quine : β {Ξ} β Type (Ξ β» βTypeβ Ξ) β Type Ξ
W : β {Ξ A} β Type Ξ β Type (Ξ β» A)
Wβ : β {Ξ A B}
β Type (Ξ β» B)
β Type (Ξ β» A β» W B)
_ββ_ : β {Ξ A}
β Type (Ξ β» A)
β Term A
β Type Ξ
data Term : {Ξ : Context} β Type Ξ β Set where
βttβ : β {Ξ} β Term {Ξ} ββ€β
βΞ»β : β {Ξ A B}
β Term {Ξ β» A} (W B)
β Term (A βββ B)
βVARββ : β {Ξ T} β Term {Ξ β» T} (W T)
β_βα΅ : β {Ξ}
β Type Ξ
β Term {Ξ} (βTypeβ Ξ)
β_βα΅ : β {Ξ T}
β Term {Ξ} T
β Term {Ξ} (βTermβ ββ β T βα΅)
βββVARβββα΅β : β {Ξ T}
β Term {Ξ β» βTermβ ββ β T βα΅}
(W (βTermβ ββ β βTermβ ββ β T βα΅ βα΅))
βββVARβββα΅β : β {Ξ}
β Term {Ξ β» βTypeβ Ξ}
(W (βTermβ ββ β βTypeβ Ξ βα΅))
_βββ_ : β {Ξ A B}
β Term {Ξ} (A βββ B)
β Term {Ξ} A
β Term {Ξ} B
ββΓ'ββ : β {Ξ}
β Term {Ξ} (βTypeβ Ξ
βββ βTypeβ Ξ
βββ βTypeβ Ξ)
quineβ : β {Ξ Ο}
β Term {Ξ}
(Quine Ο βββ Ο ββ β Quine Ο βα΅)
quineβ : β {Ξ Ο}
β Term {Ξ}
(Ο ββ β Quine Ο βα΅ βββ Quine Ο)
SW : β {Ξ X A} {a : Term A}
β Term {Ξ} (W X ββ a)
β Term X
βSWβSVβW
: β {Ξ T X A B} {x : Term X}
β Term {Ξ}
(T βββ (Wβ A ββ βVARββ βββ W B) ββ x)
β Term {Ξ}
(T βββ A ββ x βββ B)
βSWβSVβW
: β {Ξ T X A B} {x : Term X}
β Term {Ξ}
((Wβ A ββ βVARββ βββ W B) ββ x βββ T)
β Term {Ξ}
((A ββ x βββ B) βββ T)
βSWβSVβSWβSVβW
: β {Ξ T X A B} {x : Term X}
β Term {Ξ} (T βββ (Wβ A ββ βVARββ
βββ Wβ A ββ βVARββ
βββ W B) ββ x)
β Term {Ξ} (T βββ A ββ x βββ A ββ x βββ B)
βSWβSVβSWβSVβW
: β {Ξ T X A B} {x : Term X}
β Term {Ξ} ((Wβ A ββ βVARββ
βββ Wβ A ββ βVARββ
βββ W B) ββ x
βββ T)
β Term {Ξ} ((A ββ x βββ A ββ x βββ B) βββ T)
w : β {Ξ A T}
β Term {Ξ} A
β Term {Ξ β» T} (W A)
wβ : β {Ξ A B X}
β Term {Ξ β» X} (W (A βββ B))
β Term {Ξ β» X} (W A βββ W B)
βw : β {Ξ A B X}
β Term {Ξ β» X} (W A βββ W B)
β Term {Ξ β» X} (W (A βββ B))
wwβ : β {Ξ A B X Y}
β Term {Ξ β» X β» Y} (W (W (A βββ B)))
β Term {Ξ β» X β» Y} (W (W A) βββ W (W B))
βww : β {Ξ A B X Y}
β Term {Ξ β» X β» Y} (W (W A) βββ W (W B))
β Term {Ξ β» X β» Y} (W (W (A βββ B)))
_βββ_ : β {Ξ A B C}
β Term {Ξ} (B βββ C)
β Term {Ξ} (A βββ B)
β Term {Ξ} (A βββ C)
_wβββββ_ : β {Ξ A B T}
β Term {Ξ β» T} (W (βTermβ ββ β A βββ B βα΅))
β Term {Ξ β» T} (W (βTermβ ββ β A βα΅))
β Term {Ξ β» T} (W (βTermβ ββ β B βα΅))
βββββ : β {Ξ A B}
β Term {Ξ} (βTermβ ββ β A βββ B βα΅
βββ βTermβ ββ β A βα΅
βββ βTermβ ββ β B βα΅)
βββ‘ββ : β {Ξ A B}
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β Term {Ξ β» A β» B}
(W (W (βTypeβ Ξ)))
_βββββ_ : β {Ξ}
β Term {Ξ} (βTypeβ Ξ)
β Term {Ξ} (βTypeβ Ξ)
β Term {Ξ} (βTypeβ Ξ)
_βββββ_ : β {Ξ A B}
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
_ββΓββ_ : β {Ξ A B}
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β Term {Ξ β» A β» B}
(W (W (βTermβ ββ β βTypeβ Ξ βα΅)))
β‘ : Type Ξ΅ β Set _
β‘ = Term {Ξ΅}
ββ‘β : β {Ξ} β Type Ξ β Type Ξ
ββ‘β T = βTermβ ββ β T βα΅
_ββΓββ_ : β {Ξ}
β Term {Ξ} (βTypeβ Ξ)
β Term {Ξ} (βTypeβ Ξ)
β Term {Ξ} (βTypeβ Ξ)
A ββΓββ B = ββΓ'ββ βββ A βββ B
max-level : Level
max-level = lzero
mutual
β¦_β§αΆ : (Ξ : Context) β Set (lsuc max-level)
β¦ Ξ΅ β§αΆ = β€
β¦ Ξ β» T β§αΆ = Ξ£ β¦ Ξ β§αΆ β¦ T β§α΅
β¦_β§α΅ : {Ξ : Context}
β Type Ξ
β β¦ Ξ β§αΆ
β Set max-level
β¦ W T β§α΅ β¦Ξβ§
= β¦ T β§α΅ (Ξ£.fst β¦Ξβ§)
β¦ Wβ T β§α΅ β¦Ξβ§
= β¦ T β§α΅ (Ξ£.fst (Ξ£.fst β¦Ξβ§) , Ξ£.snd β¦Ξβ§)
β¦ T ββ x β§α΅ β¦Ξβ§ = β¦ T β§α΅ (β¦Ξβ§ , β¦ x β§α΅ β¦Ξβ§)
β¦ βTypeβ Ξ β§α΅ β¦Ξβ§
= Lifted (Type Ξ)
β¦ βTermβ β§α΅ β¦Ξβ§
= Lifted (Term (lower (Ξ£.snd β¦Ξβ§)))
β¦ A βββ B β§α΅ β¦Ξβ§ = β¦ A β§α΅ β¦Ξβ§ β β¦ B β§α΅ β¦Ξβ§
β¦ A βΓβ B β§α΅ β¦Ξβ§ = β¦ A β§α΅ β¦Ξβ§ Γ β¦ B β§α΅ β¦Ξβ§
β¦ ββ€β β§α΅ β¦Ξβ§ = β€
β¦ ββ₯β β§α΅ β¦Ξβ§ = β₯
β¦ Quine Ο β§α΅ β¦Ξβ§ = β¦ Ο β§α΅ (β¦Ξβ§ , (lift (Quine Ο)))
β¦_β§α΅ : β {Ξ : Context} {T : Type Ξ}
β Term T
β (β¦Ξβ§ : β¦ Ξ β§αΆ)
β β¦ T β§α΅ β¦Ξβ§
β¦ β x βα΅ β§α΅ β¦Ξβ§ = lift x
β¦ β x βα΅ β§α΅ β¦Ξβ§ = lift x
β¦ βββVARβββα΅β β§α΅ β¦Ξβ§
= lift β lower (Ξ£.snd β¦Ξβ§) βα΅
β¦ βββVARβββα΅β β§α΅ β¦Ξβ§
= lift β lower (Ξ£.snd β¦Ξβ§) βα΅
β¦ f βββ x β§α΅ β¦Ξβ§ = β¦ f β§α΅ β¦Ξβ§ (β¦ x β§α΅ β¦Ξβ§)
β¦ βttβ β§α΅ β¦Ξβ§ = tt
β¦ quineβ {Ο} β§α΅ β¦Ξβ§ x = x
β¦ quineβ {Ο} β§α΅ β¦Ξβ§ x = x
β¦ βΞ»β f β§α΅ β¦Ξβ§ x = β¦ f β§α΅ (β¦Ξβ§ , x)
β¦ βVARββ β§α΅ β¦Ξβ§ = Ξ£.snd β¦Ξβ§
β¦ SW t β§α΅ = β¦ t β§α΅
β¦ βSWβSVβW f β§α΅ = β¦ f β§α΅
β¦ βSWβSVβW f β§α΅ = β¦ f β§α΅
β¦ βSWβSVβSWβSVβW f β§α΅ = β¦ f β§α΅
β¦ βSWβSVβSWβSVβW f β§α΅ = β¦ f β§α΅
β¦ w x β§α΅ β¦Ξβ§ = β¦ x β§α΅ (Ξ£.fst β¦Ξβ§)
β¦ wβ f β§α΅ β¦Ξβ§ = β¦ f β§α΅ β¦Ξβ§
β¦ βw f β§α΅ β¦Ξβ§ = β¦ f β§α΅ β¦Ξβ§
β¦ wwβ f β§α΅ β¦Ξβ§ = β¦ f β§α΅ β¦Ξβ§
β¦ βww f β§α΅ β¦Ξβ§ = β¦ f β§α΅ β¦Ξβ§
β¦ ββΓ'ββ β§α΅ β¦Ξβ§ A B = lift (lower A βΓβ lower B)
β¦ g βββ f β§α΅ β¦Ξβ§ x = β¦ g β§α΅ β¦Ξβ§ (β¦ f β§α΅ β¦Ξβ§ x)
β¦ f wβββββ x β§α΅ β¦Ξβ§
= lift (lower (β¦ f β§α΅ β¦Ξβ§) βββ lower (β¦ x β§α΅ β¦Ξβ§))
β¦ βββββ β§α΅ β¦Ξβ§ f x
= lift (lower f βββ lower x)
β¦ βββ‘ββ {Ξ} T β§α΅ β¦Ξβ§
= lift (βTermβ ββ lower (β¦ T β§α΅ β¦Ξβ§))
β¦ A βββββ B β§α΅ β¦Ξβ§
= lift
(lower (β¦ A β§α΅ β¦Ξβ§) βββ lower (β¦ B β§α΅ β¦Ξβ§))
β¦ A βββββ B β§α΅ β¦Ξβ§
= lift
(lower (β¦ A β§α΅ β¦Ξβ§) βββββ lower (β¦ B β§α΅ β¦Ξβ§))
β¦ A ββΓββ B β§α΅ β¦Ξβ§
= lift
(lower (β¦ A β§α΅ β¦Ξβ§) ββΓββ lower (β¦ B β§α΅ β¦Ξβ§))
module inner (βXβ : Type Ξ΅)
(βfβ : Term {Ξ΅} (ββ‘β βXβ βββ βXβ))
where
βHβ : Type Ξ΅
βHβ = Quine (Wβ βTermβ ββ βVARββ βββ W βXβ)
βtoHβ : β‘ ((ββ‘β βHβ βββ βXβ) βββ βHβ)
βtoHβ = βSWβSVβW quineβ
βfromHβ : β‘ (βHβ βββ (ββ‘β βHβ βββ βXβ))
βfromHβ = βSWβSVβW quineβ
ββ‘βHβββ‘βXββ : β‘ (ββ‘β βHβ βββ ββ‘β βXβ)
ββ‘βHβββ‘βXββ
= βΞ»β (w β βfromHβ βα΅
wβββββ βVARββ
wβββββ βββVARβββα΅β)
βhβ : Term βHβ
βhβ = βtoHβ βββ (βfβ βββ ββ‘βHβββ‘βXββ)
LΣ§b : β‘ βXβ
LΣ§b = βfromHβ βββ βhβ βββ β βhβ βα΅
LΣ§b : β {X}
β Term {Ξ΅} (ββ‘β X βββ X) β Term {Ξ΅} X
Lӧb {X} f = inner.Lӧb X f
β¦_β§ : Type Ξ΅ β Set _
β¦ T β§ = β¦ T β§α΅ tt
βΒ¬β_ : β {Ξ} β Type Ξ β Type Ξ
βΒ¬β T = T βββ ββ₯β
_wββΓββ_ : β {Ξ X}
β Term {Ξ β» X} (W (βTypeβ Ξ))
β Term {Ξ β» X} (W (βTypeβ Ξ))
β Term {Ξ β» X} (W (βTypeβ Ξ))
A wββΓββ B = wβ (wβ (w ββΓ'ββ) βββ A) βββ B
lΣ§b : β {βXβ} β β‘ (ββ‘β βXβ βββ βXβ) β β¦ βXβ β§
lΣ§b f = β¦ LΣ§b f β§α΅ tt
incompleteness : Β¬ β‘ (βΒ¬β (ββ‘β ββ₯β))
incompleteness = lӧb
soundness : Β¬ β‘ ββ₯β
soundness x = β¦ x β§α΅ tt
non-emptiness : Ξ£ (Type Ξ΅) (Ξ» T β β‘ T)
non-emptiness = ββ€β , βttβ
\end{code}