-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrainer.py
85 lines (75 loc) · 2.63 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import sys, time
import data_organizer, cnn
def mean_loss(neural_net, has_mask, pairs, decoder):
num_pairs = len(pairs)
acc = 0
for pair in pairs:
(input_img_temp, output_img) = decoder(pair)
if (has_mask):
input_img = input_img_temp
else:
input_img = input_img_temp[:-1]
acc += neural_net.get_loss(input_img, output_img)
return acc / num_pairs
def store_nn(neural_net, storage_path):
kwds = neural_net.export_info()
np.savez(storage_path, **kwds)
def train_nn(neural_net, has_mask, rng_seed, training, validation, decoder,
storage_path, max_epochs=0, max_stagnation=0, eta_list=[], wait=0):
rng = np.random.RandomState(rng_seed + 1)
stagnation = 0
epochs = 0
prev_loss = mean_loss(neural_net, has_mask, validation, decoder)
min_loss = prev_loss
print("Initial loss = " + str(prev_loss))
batch_size = neural_net.input_shp[0]
num_batches_f = int(np.floor(len(training) / batch_size))
num_batches_c = int(np.ceil(len(training) / batch_size))
extra = num_batches_c - num_batches_f
while ((not max_stagnation or stagnation < max_stagnation) and
(not max_epochs or epochs < max_epochs)):
print("Epoch " + str(epochs) + " ", end='')
dots = 0
batches = np.empty((num_batches_c, batch_size, 2), dtype=object)
batches[:num_batches_f] = training[rng.choice(
range(len(training)), size=(num_batches_f, batch_size),
replace=True)]
batches[num_batches_f:] = training[rng.choice(
range(len(training)), size=(extra, batch_size),
replace=True)]
input_batch = np.zeros(neural_net.input_shp, dtype='float32')
output_batch = np.zeros(neural_net.output_shp, dtype='float32')
for batch_num in range(num_batches_c):
batch = batches[batch_num]
for i in range(batch_size):
(input_img, output_batch[i]) = decoder(batch[i])
if (has_mask):
input_batch[i] = input_img
else:
input_batch[i] = input_img[:-1]
neural_net.train_model(input_batch, output_batch)
time.sleep(wait / 1000.0)
num_newdots = ((10 * (batch_num + 1)) // num_batches_c) - dots
print('.' * num_newdots, end='')
sys.stdout.flush()
dots += num_newdots
print('.' * (10 - dots), end='')
sys.stdout.flush()
if (eta_list):
neural_net.eta.set_value(eta_list[0])
eta_list=eta_list[1:]
stored_msg = ""
loss = mean_loss(neural_net, has_mask, validation, decoder)
if (loss < min_loss):
min_loss = loss
store_nn(neural_net, storage_path)
stored_msg = "\n\tNeural network stored"
if (prev_loss < loss):
stagnation += 1
else:
stagnation = 0
prev_loss = loss
print("\n\tVerification loss = " + str(loss) +
"\n\tStagnation = " + str(stagnation) + stored_msg)
epochs += 1