-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_initial_map.py
724 lines (617 loc) · 26.8 KB
/
create_initial_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
'''
Judith Verstegen, May 2019
This script takes 1) Corine data ('90, '00, '06, '12 and '18) and
2) a map of roads to create all datasets necessary
to generate inputs and calibration data for an urban growth model.
'''
from pcraster import *
from pcraster.framework import *
import gdal # version 2.3.3 for Python 3.6
import metrics
import numpy as np
import os
import osr
import ogr
import parameters
import random
##############
### inputs ###
##############
# Directory of Corine land use maps and other input
work_dir = parameters.getWorkDir()
data_dir = os.path.join(work_dir, 'data')
# Coordinates of case study region
# in ERST 1989 (Corine projection) as [x0, y0, x1, y1]
country = parameters.getCountryName()
coords_dict = {
'IE':[3167978,3406127,3327978,3566127],
'IT':[4172280,2403670,4332280,2563670],
'PL':[5002510,3212710,5162510,3372710]
}
country_dir = os.path.join(work_dir, 'input_data', str(country))
# Set the country bounding box
coords = coords_dict[country]
# zone size as a factor of the cell size
numberOfZones = parameters.getNumberOfZones()
zone_size = int(np.sqrt(numberOfZones)*100) # 100 m (cell size) -> zone_size = 40 km. Test map, dividing area into 16 zones. ## The transform_save_data.py script didn't work for 4 zones
# for creating observations
realizations = 1 #20
# window size as a factor of the cell size
corr_window_size = 50
omission = 10#52
metric_names = parameters.getSumStats()
#################
### functions ###
#################
def getRowsCols(rast, coords):
"""Calculate nr of rows and colums of output file"""
# To translate coordinates to raster indices
gt = rast.GetGeoTransform()
ul_x, ul_y = world2pixel(gt, coords[0], coords[3])
lr_x, lr_y = world2pixel(gt, coords[2], coords[1])
print('column numbers are', ul_x, ul_y, lr_x, lr_y)
# calculate how many rows and columns the ranges cover
out_columns = lr_x - ul_x
# y indices increase from top to bottom!!
out_rows = lr_y - ul_y
return out_rows, out_columns, ul_x, ul_y
def makeclone(in_fn, coords):
"""Uses gdal and pcraster to automatically create a clone file."""
# remove existing clone if present
if os.path.exists('./clone.map'): os.remove('./clone.map')
# open the raster
rast = gdal.Open(in_fn)
out_rows, out_columns, ul_x, ul_y = getRowsCols(rast, coords)
# Make the clone with the following inputs
# -s for not invoking the menu
# -R nr of rows
# -C nr of columns
# -N data type Nominal
# -P y coordinates increase bottom to top
# -x x-coordinate of upper left corner
# -y y-coordinate of upper left corner
# -l cell length, set to 100 m (same as Corine)
strings = ['mapattr -s', ' -R ' + str(out_rows), \
' -C ' + str(out_columns), ' -N ', '-P yb2t', \
' -x ' + str(coords[0]), ' -y ' + str(coords[3]), \
' -l 100 clone.map']
command = "".join(strings)
print(command)
os.system(command)
def world2pixel(geoMatrix, x, y):
"""
Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
the pixel location of a geospatial coordinate (Cookbook)
"""
ulX = geoMatrix[0]
ulY = geoMatrix[3]
xDist = geoMatrix[1]
yDist = geoMatrix[5]
rtnX = geoMatrix[2]
rtnY = geoMatrix[4]
pixel = int((x - ulX) / xDist)
line = int((ulY - y) / xDist)
return (pixel, line)
def clip(rast, coords):
'''Clip an opened file and return the clipped file.'''
out_rows, out_columns, ul_x, ul_y = getRowsCols(rast, coords)
print('output raster extent:', out_columns, out_rows)
# Get data from the source raster and write to the new one
in_band = rast.GetRasterBand(1)
data = in_band.ReadAsArray(ul_x, ul_y, out_columns, out_rows)
return data
def clip_and_convert(in_fn, coords, nodata, datatype):
'''Open, clip and convert dataset to PCRaster map.'''
'''datatype: Boolean, Nominal, Ordinal, Scalar, Directional or Ldd'''
rast_data_source = gdal.Open(in_fn)
# Get georeference info
geotransform = rast_data_source.GetGeoTransform()
width = geotransform[1]
height = geotransform[5]
print('Cell size:', width, height)
origin_x = geotransform[0]
origin_y = geotransform[3]
print('x, y:', origin_x, origin_y)
data = clip(rast_data_source, coords)
themap = numpy2pcr(datatype, data, nodata)
##print data
del rast_data_source
return themap
def select_urban(land_use):
'''Create a Boolean map of all urban land uses from Corine.Without 122 (roads) and 124 (airports)'''
# Remove nodata values CLC = 999
land_use = ifthen(scalar(land_use) != 999, land_use)
# Select urban areas
urban = pcrand(
scalar(land_use) < 200,
pcrand(scalar(land_use) > 0,
pcrand(pcrnot(scalar(land_use) == 122),
pcrnot(scalar(land_use) == 124))))
#aguila(urban)
return urban
def simplify_lu_map(amap):
'''Change Corine map with many classes into simple land use map.'''
# 1 = urban
urban = select_urban(amap)
landuse = nominal(urban)
# 2 = water AND ROADS
water = pcror(pcror(pcrand(scalar(amap) > 500, scalar(amap) < 900), scalar(amap) == 122), scalar(amap) == 124)
landuse = ifthenelse(water, nominal(2), landuse)
# 3 = nature
nature = pcrand(scalar(amap) > 300, scalar(amap) < 500)
landuse = ifthenelse(nature, nominal(3), landuse)
# 4 = agriculture
ag = pcrand(scalar(amap) > 200, scalar(amap) < 300)
landuse = ifthenelse(ag, nominal(4), landuse)
# 5 = NODATA # find nodata in pcraster
nodata = (landuse==0)
landuse = ifthenelse(nodata, nominal(5), landuse)
landuse = ifthen(scalar(landuse)<5, landuse)
return landuse
def omiss_commiss_map(prev, bool_map, randmap, omiss, simple_lu):
# commission error
arr = pcr2numpy(randmap, np.nan)
z_comm = np.percentile(arr, 100 - omiss)
to_remove = pcrand(bool_map, randmap >= z_comm)
##print 'frac remove', \
float(maptotal(scalar(to_remove))/maptotal(scalar(bool_map)))
cells = float(maptotal(scalar(to_remove)))
##print 'cells to remove', cells
# omission needs to be corrected for class occurance
where_can = pcrand(pcrand(pcrnot(bool_map), pcrnot(prev)), \
pcrne(simple_lu, 2))
x = float (cells / maptotal(scalar(where_can)))
##print 'frac add', x
z_om = np.percentile(arr, 100 - (100 * x))
# omission error
to_add = pcrand(where_can, randmap >= z_om)
cells = float(maptotal(scalar(to_add)))
##print 'cells to add', cells
##new_map = pcrand(pcrnot(to_remove), pcror(bool_map, to_add))
return to_remove, to_add
def reproject(in_fn, out_fn, in_rast, data_type):
# data_type: ['point','polyline','polygon']
print('Reprojecting shapefile...')
# Open the raster
rast_data_source = gdal.Open(in_rast)
# Get metadata (not required)
print('nr of bands:', rast_data_source.RasterCount)
cols = rast_data_source.RasterXSize
rows = rast_data_source.RasterYSize
print('extent:', cols, rows)
# Get georeference info (not required)
geotransform = rast_data_source.GetGeoTransform()
pixelWidth = geotransform[1]
pixelHeight = geotransform[5]
print('cell size:', pixelWidth, pixelHeight)
originX = geotransform[0]
originY = geotransform[3]
print('x, y:', originX, originY)
rast_spatial_ref = rast_data_source.GetProjection()
# Get the correct driver
driver = ogr.GetDriverByName('ESRI Shapefile')
# 0 means read-only. 1 means writeable.
vect_data_source = driver.Open(in_fn, 0)
# Check to see if shapefile is found.
if vect_data_source is None:
print('Could not open %s' % (in_fn))
# Get the Layer class object
layer = vect_data_source.GetLayer(0)
# Get reference system info
vect_spatial_ref = layer.GetSpatialRef()
#print('vector spatial ref is', vect_spatial_ref)
# create osr object of raster spatial ref info
sr = osr.SpatialReference(rast_spatial_ref)
transform = osr.CoordinateTransformation(vect_spatial_ref, sr)
# Delete if output file already exists
# We can use the same driver
if os.path.exists(out_fn):
print('exists, deleting')
driver.DeleteDataSource(out_fn)
out_ds = driver.CreateDataSource(out_fn)
if out_ds is None:
print('Could not create %s' % (out_fn))
# Create the shapefile layer WITH THE SR
if data_type == 'point':
data_arg = ogr.wkbPoint
elif data_type == 'polyline':
data_arg = ogr.wkbLineString
elif data_type == 'polygon':
data_arg = ogr.wkbLinearRing
out_lyr = out_ds.CreateLayer('reprojected', sr,
data_arg)
out_lyr.CreateFields(layer.schema)
out_defn = out_lyr.GetLayerDefn()
out_feat = ogr.Feature(out_defn)
# Loop over all features and change their spatial ref
for in_feat in layer:
geom = in_feat.geometry()
geom.Transform(transform)
out_feat.SetGeometry(geom)
# Make sure to also include the attributes in the new file
for i in range(in_feat.GetFieldCount()):
value = in_feat.GetField(i)
out_feat.SetField(i, value)
out_lyr.CreateFeature(out_feat)
del out_ds
print('Reprojected.')
return out_feat
def rasterize(InputVector, OutputImage, RefImage):
print('Rasterizing shapefile...')
gdalformat = 'GTiff'
datatype = gdal.GDT_Byte
burnVal = 1 #value for the output image pixels
# Get projection info from reference image
Image = gdal.Open(RefImage, gdal.GA_ReadOnly)
# Open Shapefile
Shapefile = ogr.Open(InputVector)
Shapefile_layer = Shapefile.GetLayer()
# Chceck if raster exists. If yes, delete.
if os.path.exists(OutputImage):
print('Raster exists, deleting')
os.remove(OutputImage)
# Rasterise
Output = gdal.GetDriverByName(gdalformat).Create(OutputImage, Image.RasterXSize, Image.RasterYSize, 1, datatype, options=['COMPRESS=DEFLATE'])
print('New raster created')
Output.SetProjection(Image.GetProjectionRef())
Output.SetGeoTransform(Image.GetGeoTransform())
# Write data to band 1
Band = Output.GetRasterBand(1)
Band.SetNoDataValue(255)
gdal.RasterizeLayer(Output, [1], Shapefile_layer, burn_values=[burnVal])
# Close datasets
Band = None
Output = None
Image = None
Shapefile = None
# Build image overviews
subprocess.call("gdaladdo --config COMPRESS_OVERVIEW DEFLATE "+OutputImage+" 2 4 8 16 32 64", shell=True)
print("Rasterized.")
def create_filtered_shapefile(in_shapefile, country, out_dir, out_name, filter_query):
### Script for selecting train stations from OSM transport data.
### Data was downlowaded for Ireland, Italy and Poland.
### Data is in folders with names corresponding to the names of the countries
### train station attributes: railway=halt and railway=station
print('Filtering shapefile...')
# Get the correct driver
driver = ogr.GetDriverByName('ESRI Shapefile')
# 0 means read-only. 1 means writeable.
data_source = driver.Open(in_shapefile,0)
# Check to see if shapefile is found.
if data_source is None:
print('Could not open %s' % (in_shapefile))
# get the Layer class object
input_layer = data_source.GetLayer(0)
# Apply a filter
input_layer.SetAttributeFilter(filter_query)
# Copy Filtered Layer and Output File
driver = ogr.GetDriverByName('ESRI Shapefile')
# Check if output data exists. If yes, delete.
if os.path.exists(os.path.join(out_dir, out_name)):
print('Shapefile exists, deleting')
os.remove(os.path.join(out_dir, out_name))
out_ds = driver.CreateDataSource(out_dir)
print('Filtered')
out_layer = out_ds.CopyLayer(input_layer, out_name)
del input_layer, out_layer, out_ds
def reproject_resample_tif(in_raster, out_raster, ref_raster):
''' Reprojects the inout raster to match the CRS and cell size of the reference raster.'''
''' Resampling method: Nearest Neighbour.'''
print('Reprojecting and resampling tif...')
theinput = gdal.Open(in_raster, gdal.GA_ReadOnly)
inputProj = theinput.GetProjection()
inputTrans = theinput.GetGeoTransform()
reference = gdal.Open(ref_raster, gdal.GA_ReadOnly)
referenceProj = reference.GetProjection()
referenceTrans = reference.GetGeoTransform()
bandreference = reference.GetRasterBand(1)
x = reference.RasterXSize
y = reference.RasterYSize
# Chceck if raster exists. If yes, delete.
if os.path.exists(out_raster):
print('Raster exists, deleting')
os.remove(out_raster)
driver= gdal.GetDriverByName('GTiff')
output = driver.Create(out_raster,x,y,1,bandreference.DataType)
output.SetGeoTransform(referenceTrans)
output.SetProjection(referenceProj)
gdal.ReprojectImage(theinput,output,inputProj,referenceProj,gdal.GRA_NearestNeighbour)
print('Tif reprojected and resampled')
del theinput, output, reference
############
### main ###
############
# 0. clean the two directories (input_data and observations)
if not os.path.isdir(os.path.join(work_dir, 'input_data')):
os.mkdir(os.path.join(work_dir, 'input_data'))
if not os.path.isdir(os.path.join(work_dir, 'observations')):
os.mkdir(os.path.join(work_dir, 'observations'))
if not os.path.isdir(country_dir):
os.mkdir(country_dir)
if not os.path.isdir(os.path.join(work_dir, 'observations', str(country))):
os.mkdir(os.path.join(work_dir, 'observations', str(country)))
files = os.listdir(country_dir)
for f in files:
if f not in ['make_demand_manual.xlsx', 'demand.tss']:
os.remove(os.path.join(country_dir, f))
files = os.listdir(os.path.join(work_dir, 'observations', str(country)))
for f in files:
if not os.path.isdir(os.path.join(work_dir, 'observations', \
str(country), f)):
os.remove(os.path.join(work_dir, 'observations', str(country), f))
# create the clone map
corine_dir = os.path.join(data_dir, 'Corine')
names = os.listdir(corine_dir)
# hereto we need one Corine raster. It does not matter which one
print(os.path.join(corine_dir, names[1]))
if os.path.isdir(os.path.join(corine_dir, names[1])):
print('here')
in_fn = os.path.join(corine_dir, names[1], names[1] + '.tif')
makeclone(in_fn, coords)
# Corine maps
print('----------------------- Urban maps -----------------------')
for a_name in os.listdir(corine_dir):
# Corine maps are tiffs in folders with same name
# Except when there is an 'a' behind the version
if os.path.isdir(os.path.join(corine_dir, a_name)):
# functions to execute
# 1. open, clip and convert
# Path to the old and new raster file
if a_name[-1] == 'a':
in_fn = os.path.join(corine_dir, a_name, a_name[0:-1] \
+ '.tif')
else:
in_fn = os.path.join(corine_dir, a_name, a_name + '.tif')
print(in_fn)
setclone('clone')
lu = clip_and_convert(in_fn, coords, -32768, Nominal)
report(lu, os.path.join('observations', country, a_name[13:15] + '.map'))
# 2. urban map
urban = select_urban(lu)
print(a_name[13:15], float(maptotal(scalar(urban))))
report(urban, os.path.join('observations', country, \
'urb' + a_name[13:15] + '.map'))
# 3. make simpler initial land use map only for observation years
if a_name[13:15] in ['90','00','06','12','18']:
simple_lu = simplify_lu_map(lu)
report(simple_lu, os.path.join(country_dir, 'init_lu'+str(a_name[13:15])+'.map'))
# Select the dir for the temporal working files
temp_dir = os.path.join(data_dir, 'temporal_data')
print('-------------------- Reference raster --------------------')
# Select the 1990 Corine raster as the reference raster for further actions
raster_name = os.listdir(corine_dir)[0]
print('Reference raster name ' + raster_name)
ref_raster = os.path.join(corine_dir, raster_name, raster_name + '.tif')
# 4. road map outside loop
print('------------------------- Roads -------------------------')
# Road dataset will be reprojected and rasterized and saved into 'raster' folder inside the road_dir.
# 'raster' folder needs to exist.
road_dir = os.path.join(data_dir, 'roads')
# Reproject the input vector data using the raster as the reference layer
# Save the reprojected file in the input_data folder and remove later
in_shp = os.path.join(road_dir, 'roads.shp')
out_fn = os.path.join(data_dir, 'temporal_data', 'roads_reprojected.shp')
reproject(in_shp, out_fn, ref_raster, 'polyline')
# Rasterize the reprojected shapefile
out_raster = os.path.join(data_dir, 'temporal_data', 'roads_raster.tif')
rasterize(out_fn, out_raster, ref_raster)
roads = clip_and_convert(out_raster, coords, 255, Nominal)
nullmask = spatial(nominal(0))
report(cover(roads, nullmask), os.path.join(country_dir, 'roads.map'))
# Remove the working files
road_files = os.listdir(temp_dir)
for f in road_files:
os.remove(os.path.join(temp_dir, f))
print('Roads created.')
# 5. train station map outside loop
print('-------------------- Train stations --------------------')
# Train station dataset will be reprojected and rasterized and saved into 'raster' folder inside the railways_dir.
# 'raster' folder needs to exist.
railway_dir = os.path.join(data_dir, 'railways')
print('Creating train stations map in: ', country,'...')
### 1. Select the train stations
# Select the input and output shapefile dir and name
in_fn = os.path.join(railway_dir, country, 'gis_osm_transport_free_1.shp')
f_name = 'stations_' + country
out_dir = os.path.join(data_dir, 'temporal_data')
out_name = 'stations_' + country
# Filter by our query
query_str = "fclass = 'railway_station' OR fclass = 'railway_halt'"
create_filtered_shapefile(in_fn, country, out_dir, out_name, query_str)
print(country, ': Filtered shapefile created.')
### 2. Reproject the shapefiles
in_shp = os.path.join(data_dir, 'temporal_data', out_name + '.shp')
out_shp = os.path.join(data_dir, 'temporal_data', out_name + '_reprojected.shp')
reproject(in_shp, out_shp, ref_raster, 'point')
### 3. Rasterize the reprojected shapefile
f_dir = os.path.join(railway_dir, country)
##raster_dir = os.path.join(f_dir, 'raster')
out_raster = os.path.join(data_dir, 'temporal_data', 'stations_' + country + '.tif')
rasterize(out_shp, out_raster, ref_raster)
### 4. Create the map files
stations = clip_and_convert(out_raster, coords, 255, Nominal)
nullmask = spatial(nominal(0))
report(cover(stations, nullmask), os.path.join(country_dir, 'train_stations.map'))
### 5. Remove the working files
rail_files = os.listdir(temp_dir)
for f in rail_files:
os.remove(os.path.join(temp_dir, f))
print('Train stations created.')
# 6. no-go areas map outside loop <- to be merged into one no-go map
# Protected areas from NATURA2000 database and areas with the slope > 30 degrees are excluded
print('---------------------- No-go map ----------------------')
print('---------- 1. Protected areas ----------')
# Excluded areas will be rasterized and saved into 'raster' folder inside the protected_dir.
# 'raster' folder needs to exist.
protected_dir = os.path.join(data_dir, 'NATURA2000')
### 1. Rasterize the projected area shapefile
# Select the input and output dir and name
in_fn = os.path.join(protected_dir, 'Natura2000_end2018_epsg3035.shp')
out_raster = os.path.join(data_dir, 'temporal_data','protected.tif')
rasterize(in_fn, out_raster, ref_raster)
# Create the map file
protected = clip_and_convert(out_raster, coords, 255, Nominal)
### 2. Create no-go map
report(cover(protected, nullmask), os.path.join(country_dir, 'NATURA2000.map'))
print('Protected areas created.')
print('----------- 2. Steep areas -----------')
# Opend the DEM
dem_names = {
'IT': 'eu_dem_v11_E40N20',
'IE': 'eu_dem_v11_E30N30',
'PL': 'eu_dem_v11_E50N30'
}
dem_dir = os.path.join(data_dir, 'DEM', country, dem_names[country] + '.TIF')
dem_repr = os.path.join(temp_dir, 'reprojected_dem_' + country + '.tif')
# Reproject and resample DEM tif to match the CLC dataset
reproject_resample_tif(dem_dir, dem_repr, ref_raster)
# Clip and convert
dem = clip_and_convert(dem_repr, coords, 255, Scalar)
nullmask = spatial(scalar(0))
report(cover(dem, nullmask), os.path.join(country_dir, 'dem.map'))
print('DEM map created.')
# Calculate the slope
slope = slope(dem)
report(cover(slope, nullmask), os.path.join(country_dir, 'slope.map'))
print('Slope map created.')
# Remove the working files
dem_files = os.listdir(temp_dir)
for f in dem_files:
os.remove(os.path.join(temp_dir, f))
print('------------ 3. No-go map ------------')
# Combine the maps into the no-go map
# NATURA2000 and slope >30 degrees (around 58%) are excluded
nogo = pcror(boolean(protected),slope>=0.58)
report(nogo, os.path.join(country_dir, 'nogo.map')) # SHOULD I USE COVER() FUNCTION?
print('nogo map created.')
# 7. other input data sets
# Masks with 0 and 1 for the study area and NoData elsewhere
null_mask = spatial(scalar(0))
report(null_mask, os.path.join(country_dir, 'nullmask.map'))
one_mask = boolean(null_mask + 1)
report(one_mask, os.path.join(country_dir, 'onemask.map'))
# Blocks (zones) for the calibration
strings = ['resample -r ' + str(zone_size) + ' ' + \
os.path.join(country_dir, 'onemask.map') + ' resamp.map']
command = "".join(strings)
os.system(command)
strings = ['pcrcalc unique.map =','uniqueid(resamp.map)']
command = "".join(strings)
os.system(command)
command = 'resample unique.map zones.map --clone ' + \
os.path.join(country_dir, 'onemask.map')
os.system(command)
command = 'pcrcalc ' + os.path.join(country_dir, 'zones.map') + \
' = nominal(zones.map)'
os.system(command)
os.remove('zones.map')
os.remove('resamp.map')
os.remove('unique.map')
# 8. blocks and calibration/validation masks
unique = uniqueid(one_mask)
zones = readmap(os.path.join(country_dir, 'zones.map'))
samplePoints = pcreq(areaminimum(unique, zones), unique)
samplePoints = uniqueid(samplePoints)
# Create sample points for each zone
samplePointsCondition = ifthen(samplePoints > 0, boolean(1))
samplePointsCondition = uniqueid(samplePointsCondition)
report(samplePointsCondition, os.path.join(country_dir, 'sampPoint.map'))
command = 'map2col --unitcell ' + os.path.join(country_dir, 'sampPoint.map') + \
' ' + os.path.join(country_dir, 'sampPoint.col')
os.system(command)
# Create a sample point for one cell in the study area (for one metric for the whole study area)
## Find corrdinates of the middle of the study area
middle_x = (mapminimum(xcoordinate(one_mask))+mapmaximum(xcoordinate(one_mask)))/2
middle_y = (mapminimum(ycoordinate(one_mask))+mapmaximum(ycoordinate(one_mask)))/2
## Select bottom right quarter and assign unique values
one_quarter = uniqueid(pcrand(xcoordinate(one_mask)<middle_x,ycoordinate(one_mask)>middle_y))
## Find the point in the middle
samplePoint = ifthen(pcreq(mapmaximum(one_quarter), one_quarter), scalar(1))
report(samplePoint, os.path.join(country_dir, 'sampSinglePoint.map'))
command = 'map2col --unitcell ' + os.path.join(country_dir, 'sampSinglePoint.map') + \
' ' + os.path.join(country_dir, 'sampSinglePoint.col')
os.system(command)
# Create sample points for each cell (for Kappa statistic calculation)
samplePointsNr = unique
report(samplePointsNr, os.path.join(country_dir, 'sampPointNr.map'))
command = 'map2col --unitcell ' + os.path.join(country_dir, 'sampPointNr.map') + \
' ' + os.path.join(country_dir, 'sampPointNr.col')
os.system(command)
# 9. summary statistics with no stochasticity
print('---------------------- Statistics ----------------------')
print('------------ CLC area ------------')
area = {}
for year in ['90','00','06','12','18']:
amap = readmap(os.path.join(work_dir, 'observations', \
country, 'urb' + year + '.map'))
# collect total area data for demand
area[year] = float(maptotal(scalar(amap)))
print('Area from CLC:')
print(area)
print('')
# 10. realizations and their summary statistics
print('------------ Realizations ------------')
# list of pairs of actual year and time step
if not os.path.exists(os.path.join(work_dir, 'observations', \
country, 'realizations')):
os.mkdir(os.path.join(work_dir, 'observations', country, 'realizations'))
avs = {}
mins = {}
maxs = {}
for i in range(1, realizations + 1):
print(i)
# make directories for the realizations
if not os.path.exists(os.path.join(work_dir, 'observations', country, \
'realizations', str(i))):
os.mkdir(os.path.join(work_dir, 'observations', country, \
'realizations', str(i)))
# map with random numbers but with correlation by moving window
randmap = windowaverage(uniform(1), corr_window_size * celllength())
base = os.path.join('observations', country, 'realizations')
prev = None
# Year numbers are adjusted to the time step numbers
for year in [('90', 1), ('00', 11), ('06', 17), ('12', 23), ('18', 29)]:
amap = readmap(os.path.join(work_dir, 'observations', \
country, 'urb' + year[0] + '.map'))
# change some of the NEW urban cells, not the existing ones
if prev is not None:
diff = pcrand(amap, pcrnot(prev))
##aguila(diff)
to_remove, to_add = omiss_commiss_map(prev, diff, randmap, \
omission, simple_lu)
new_map = pcrand(pcrnot(to_remove), pcror(amap, to_add))
##aguila(new_map)
else:
new_map = amap
# TO_DO collect total area data for demand
cells = float(maptotal(scalar(new_map)))
if i == 1:
mins[year[0]] = cells
maxs[year[0]] = cells
avs[year[0]] = float(maptotal(scalar(amap)))
else:
if cells < mins[year[0]]: mins[year[0]] = cells
if cells > maxs[year[0]]: maxs[year[0]] = cells
# Report a map with observed urban areas
report(new_map, generateNameT(os.path.join(base, str(i),\
'urb'), year[1]))
print(year[0], float(maptotal(scalar(new_map))))
# Calaculate the statistics for the given year
listOfSumStats = metrics.calculateSumStats(new_map, \
metric_names,\
zones)
j=0
for aname in metric_names:
observedmap = listOfSumStats[j]
report(observedmap, \
generateNameT(os.path.join(base, str(i), aname), \
year[1]))
j+=1
prev = amap
print('Stochastic area:')
print(mins)
print(maxs)
print(avs)
# 11. create random uniform map
uniformMap = uniform(1)
report(uniformMap, os.path.join(country_dir, 'uniform.map'))