-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
83 lines (72 loc) · 3.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""This script is the test script for Deep3DFaceRecon_pytorch
"""
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import MyVisualizer
from util.preprocess import align_img
from PIL import Image
import numpy as np
from util.load_mats import load_lm3d
import torch
from data.flist_dataset import default_flist_reader
from scipy.io import loadmat, savemat
import matplotlib.pyplot as plt
import mtcnn
from mtcnn import MTCNN
def get_data_path(root='examples'):
im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith('png') or i.endswith('jpg')]
# lm_path = [i.replace('png', 'txt').replace('jpg', 'txt') for i in im_path]
# lm_path = [os.path.join(i.replace(i.split(os.path.sep)[-1],''),'detections',i.split(os.path.sep)[-1]) for i in lm_path]
return im_path
def read_data(im_path, lm3d_std, to_tensor=True):
# to RGB
im = Image.open(im_path).convert('RGB')
W,H = im.size
img = plt.imread(im_path)
detector = MTCNN()
face = detector.detect_faces(img)
landmarks = []
for landmark in face[0]['keypoints'].values():
landmarks.append(np.array(landmark))
landmarks = np.array(landmarks)
print("*****test message*******\n")
print(landmarks)
print(landmarks.shape)
lm = landmarks.reshape([-1, 2])
lm[:, -1] = H - 1 - lm[:, -1]
_, im, lm, _ = align_img(im, lm, lm3d_std)
if to_tensor:
im = torch.tensor(np.array(im)/255., dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)
lm = torch.tensor(lm).unsqueeze(0)
return im, lm
def main(rank, opt, name='examples'):
device = torch.device(rank)
torch.cuda.set_device(device)
model = create_model(opt)
model.setup(opt)
model.device = device
model.parallelize()
model.eval()
visualizer = MyVisualizer(opt)
im_path= get_data_path(name)
lm3d_std = load_lm3d(opt.bfm_folder)
for i in range(len(im_path)):
print(i, im_path[i])
img_name = im_path[i].split(os.path.sep)[-1].replace('.png','').replace('.jpg','')
im_tensor, lm_tensor = read_data(im_path[i], lm3d_std)
data = {
'imgs': im_tensor,
'lms': lm_tensor
}
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
visualizer.display_current_results(visuals, 0, opt.epoch, dataset=name.split(os.path.sep)[-1],
save_results=True, count=i, name=img_name, add_image=False)
model.save_mesh(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.obj')) # save reconstruction meshes
# model.save_coeff(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.mat')) # save predicted coefficients
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
main(0, opt,opt.img_folder)