-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAdaptive_GPR_ROM.m
62 lines (43 loc) · 1.76 KB
/
Adaptive_GPR_ROM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [Var, Delta] = Adaptive_GPR_ROM(x_train,x_test,Mu_t,Var_t)
%% Compute the bias and variance of the pROM
%{
Created by: Kai Cheng ([email protected])
Based on: "ADAPTIVE DATA-DRIVEN PROBABILISTIC REDUCED-ORDER
MODELS FOR PARAMETERIZED DYNAMICAL SYSTEMS", submitted to SIAM journal on Scientific Computing
---------------------------------------------------------------------------
Input:
* x_train: Training parameter set
* x_test : Testing parameter set
* Mu_t : Mean of time sequence for training parameter set
* Var_t : Variance of time sequence for training parameter set
---------------------------------------------------------------------------
Output:
* Var : Prediction variance
* Delta : Prediction bias
%}
%% training sample set
model = Interpolation_model(x_train,Mu_t,Var_t);
[r, N_t] = size(Mu_t{1}); N = size(Mu_t,2);
N1 = size(x_test,1);
ub_input = model{1}.ub_input;
lb_input = model{1}.lb_input;
x_pre = (x_test - repmat(lb_input,N1,1))./(repmat(ub_input,N1,1)-repmat(lb_input,N1,1));
for i = 1: N1
for k = 1:r
std_y = model{k}.std_y;
[weight Con_var] = Kriging_weight(x_pre(i,:),model{k});
Mu_pred(k,:) = model{k}.mu_y; Var_pred(k,:) = Con_var.*std_y.^2;
for j = 1:N
Mu_pred(k,:) = Mu_pred(k,:) + weight(j)*(Mu_t{j}(k,:)- model{k}.mu_y);
Var_pred(k,:) = Var_pred(k,:) + weight(j)^2*Var_t{j}(k,:);
end
end
Var(i) = norm(sqrt(Var_pred),'fro')^2; % variance
if (length(x_test(i,:))==1)
[value ind] = min(abs(x_test(i,:) - x_train));
else
[value ind] = min(vecnorm((x_test(i,:) - x_train)'));
end
Delta(i) = norm(Mu_pred - Mu_t{ind},'fro')^2; % bias
end
end