-
Notifications
You must be signed in to change notification settings - Fork 1
/
Adaptive_GPR_ROM1.m
65 lines (48 loc) · 1.77 KB
/
Adaptive_GPR_ROM1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function [Var Delta] = Adaptive_GPR_ROM1(x_train,x_test,Mu_t,Var_t)
%% Compute the bias and variance (all latent states shate the same hyper-parameter)
%{
Created by: Kai Cheng ([email protected])
Based on: "ADAPTIVE DATA-DRIVEN PROBABILISTIC REDUCED-ORDER1
MODELS FOR PARAMETERIZED DYNAMICAL SYSTEMS", submitted to SIAM journal on Scientific Computing
---------------------------------------------------------------------------
Input:
* x_train: Training parameter set
* x_test : Testing parameter set
* Mu_t : Mean of time sequence for training parameter set
* Var_t : Variance of time sequence for training parameter set
---------------------------------------------------------------------------
Output:
* Var : Prediction variance
* Delta : Prediction bias
%}
%% training sample set
model = Interpolation_model1(x_train,Mu_t,Var_t);
[r, N_t] = size(Mu_t{1}); N = size(Mu_t,2);
N1 = size(x_test,1);
ub_input = model.ub_input;
lb_input = model.lb_input;
x_pre = (x_test - repmat(lb_input,N1,1))./(repmat(ub_input,N1,1)-repmat(lb_input,N1,1));
for k = 1: r
for i = 1:N
y(i,:) = Mu_t{i}(k,:);
var(i,:) = Var_t{i}(k,:);
end
mu_y(k,:) = mean(y);
std_y(k,:) = std(y);
end
[weight Con_var] = Kriging_weight(x_pre,model);
for i = 1: N1
Var_pred = Con_var(i).*std_y.^2; Mu_pred = mu_y;
for j = 1:N
Mu_pred = Mu_pred + weight(i,j)*(Mu_t{j}-mu_y);
Var_pred = Var_pred + weight(i,j)^2*Var_t{j};
end
Var(i) = norm(sqrt(Var_pred),'fro')^2; % variance
if (length(x_test(i,:))==1)
[value ind] = min(abs(x_test(i,:) - x_train));
else
[value ind] = min(vecnorm((x_test(i,:) - x_train)'));
end
Delta(i) = norm(Mu_pred - Mu_t{ind},'fro')^2; % bias
end
end