-
Notifications
You must be signed in to change notification settings - Fork 1
/
GPR_ROM_Interpolation1.m
81 lines (58 loc) · 2.18 KB
/
GPR_ROM_Interpolation1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [MSE,MSE1,Var,Var1,model] = GPR_ROM_Interpolation1(x_test,Snapshots,Mu_t,Var_t,U_r,x_train)
%% Interpolation of ROM based on GPR (all latent states share the same hyper-parameter with the first one)
%{
Created by: Kai Cheng ([email protected])
Based on: "ADAPTIVE DATA-DRIVEN PROBABILISTIC REDUCED-ORDER
MODELS FOR PARAMETERIZED DYNAMICAL SYSTEMS", submitted to SIAM journal on Scientific Computing
---------------------------------------------------------------------------
Input:
* Snapshots : Function for collecting snapshots
* x_test : Testing parameter set
* Mu_t : Mean of time sequence for training parameter set
* Var_t : Variance of time sequence for training parameter set
* U_r : Global basis
* x_train: Training parameter set
---------------------------------------------------------------------------
Output:
* MSE : Prediction error
* MSE1 : Prediction error1
* Var : Prediction standard deviation
* Var1 : Prediction standard deviation1
* model : Interpolation model
%}
%% Compute the relative error and standard deviation
model = Interpolation_model1(x_train,Mu_t,Var_t);
[r, N_t] = size(Mu_t{1}); N = size(Mu_t,2);
N1 = size(x_test,1);
ub_input = model.ub_input;
lb_input = model.lb_input;
x_pre = (x_test - repmat(lb_input,N1,1))./(repmat(ub_input,N1,1)-repmat(lb_input,N1,1));
for k = 1: r
for i = 1:N
y(i,:) = Mu_t{i}(k,:);
var(i,:) = Var_t{i}(k,:);
end
mu_y(k,:) = mean(y);
std_y(k,:) = std(y);
end
for i = 1: N1
X_full = Snapshots(x_test(i,:));
[weight Con_var] = Kriging_weight(x_pre(i,:),model);
Var_pred = Con_var.*std_y.^2; Mu_pred = mu_y;
for j = 1:N
Mu_pred = Mu_pred + weight(j)*(Mu_t{j}-mu_y);
Var_pred = Var_pred + weight(j)^2*Var_t{j};
end
Var1(i) = norm(sqrt(Var_pred),'fro')/norm(X_full,'fro');
for j =1 :N_t
Vart(j) = norm(sqrt(Var_pred(:,j)))/norm(X_full(:,j));
end
Var(i) = mean(Vart);
Mu_full = U_r*Mu_pred;
MSE1(i) = norm(Mu_full - X_full,'fro')/norm(X_full,'fro');
for j =1:N_t
MSE_t(j) = norm(Mu_full(:,j) - X_full(:,j))/norm(X_full(:,j));
end
MSE(i) = mean(MSE_t);
end
end