-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathresnet-pre-act.lua
167 lines (138 loc) · 5.54 KB
/
resnet-pre-act.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
-- ResNet-1001
-- This is a re-implementation of the 1001-layer residual networks described in:
-- [a] "Identity Mappings in Deep Residual Networks", arXiv:1603.05027, 2016,
-- authored by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
-- Acknowledgement: This code is contributed by Xiang Ming from Xi'an Jiaotong Univeristy.
-- ************************************************************************
-- This code incorporates material from:
-- fb.resnet.torch (https://github.com/facebook/fb.resnet.torch)
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- ************************************************************************
local nn = require 'nn'
require 'cunn'
local Convolution = cudnn.SpatialConvolution
local Avg = cudnn.SpatialAveragePooling
local ReLU = cudnn.ReLU
local Max = nn.SpatialMaxPooling
local SBatchNorm = nn.SpatialBatchNormalization
local function createModel(opt)
local depth = opt.depth
-- The new Residual Unit in [a]
local function bottleneck(nInputPlane, nOutputPlane, stride)
local nBottleneckPlane = nOutputPlane / 4
if nInputPlane == nOutputPlane then -- most Residual Units have this shape
local convs = nn.Sequential()
-- conv1x1
convs:add(SBatchNorm(nInputPlane))
convs:add(ReLU(true))
convs:add(Convolution(nInputPlane,nBottleneckPlane,1,1,stride,stride,0,0))
-- conv3x3
convs:add(SBatchNorm(nBottleneckPlane))
convs:add(ReLU(true))
convs:add(Convolution(nBottleneckPlane,nBottleneckPlane,3,3,1,1,1,1))
-- conv1x1
convs:add(SBatchNorm(nBottleneckPlane))
convs:add(ReLU(true))
convs:add(Convolution(nBottleneckPlane,nOutputPlane,1,1,1,1,0,0))
local shortcut = nn.Identity()
return nn.Sequential()
:add(nn.ConcatTable()
:add(convs)
:add(shortcut))
:add(nn.CAddTable(true))
else -- Residual Units for increasing dimensions
local block = nn.Sequential()
-- common BN, ReLU
block:add(SBatchNorm(nInputPlane))
block:add(ReLU(true))
local convs = nn.Sequential()
-- conv1x1
convs:add(Convolution(nInputPlane,nBottleneckPlane,1,1,stride,stride,0,0))
-- conv3x3
convs:add(SBatchNorm(nBottleneckPlane))
convs:add(ReLU(true))
convs:add(Convolution(nBottleneckPlane,nBottleneckPlane,3,3,1,1,1,1))
-- conv1x1
convs:add(SBatchNorm(nBottleneckPlane))
convs:add(ReLU(true))
convs:add(Convolution(nBottleneckPlane,nOutputPlane,1,1,1,1,0,0))
local shortcut = nn.Sequential()
shortcut:add(Convolution(nInputPlane,nOutputPlane,1,1,stride,stride,0,0))
return block
:add(nn.ConcatTable()
:add(convs)
:add(shortcut))
:add(nn.CAddTable(true))
end
end
-- Stacking Residual Units on the same stage
local function layer(block, nInputPlane, nOutputPlane, count, stride)
local s = nn.Sequential()
s:add(block(nInputPlane, nOutputPlane, stride))
for i=2,count do
s:add(block(nOutputPlane, nOutputPlane, 1))
end
return s
end
local model = nn.Sequential()
if opt.dataset == 'cifar10' then
-- Model type specifies number of layers for CIFAR-10 model
assert((depth - 2) % 9 == 0, 'depth should be 9n+2 (e.g., 164 or 1001 in the paper)')
local n = (depth - 2) / 9
print(' | ResNet-' .. depth .. ' CIFAR-10')
-- The new ResNet-164 and ResNet-1001 in [a]
local nStages = {16, 64, 128, 256}
model:add(Convolution(3,nStages[1],3,3,1,1,1,1)) -- one conv at the beginning (spatial size: 32x32)
model:add(layer(bottleneck, nStages[1], nStages[2], n, 1)) -- Stage 1 (spatial size: 32x32)
model:add(layer(bottleneck, nStages[2], nStages[3], n, 2)) -- Stage 2 (spatial size: 16x16)
model:add(layer(bottleneck, nStages[3], nStages[4], n, 2)) -- Stage 3 (spatial size: 8x8)
model:add(SBatchNorm(nStages[4]))
model:add(ReLU(true))
model:add(Avg(8, 8, 1, 1))
model:add(nn.View(nStages[4]):setNumInputDims(3))
model:add(nn.Linear(nStages[4], 10))
else
error('invalid dataset: ' .. opt.dataset)
end
local function ConvInit(name)
for k,v in pairs(model:findModules(name)) do
local n = v.kW*v.kH*v.nOutputPlane
v.weight:normal(0,math.sqrt(2/n))
if cudnn.version >= 4000 then
v.bias = nil
v.gradBias = nil
else
v.bias:zero()
end
end
end
local function BNInit(name)
for k,v in pairs(model:findModules(name)) do
v.weight:fill(1)
v.bias:zero()
end
end
ConvInit('cudnn.SpatialConvolution')
ConvInit('nn.SpatialConvolution')
BNInit('fbnn.SpatialBatchNormalization')
BNInit('cudnn.SpatialBatchNormalization')
BNInit('nn.SpatialBatchNormalization')
for k,v in pairs(model:findModules('nn.Linear')) do
v.bias:zero()
end
model:cuda()
if opt.cudnn == 'deterministic' then
model:apply(function(m)
if m.setMode then m:setMode(1,1,1) end
end)
end
model:get(1).gradInput = nil
return model
end
return createModel