-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver.py
141 lines (111 loc) · 4.28 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import time
import numpy as np
import torch
from logger.saver import Saver
from logger import utils
def convert_tensor_values(tensor):
return torch.where(tensor > 0, torch.ones_like(tensor), -torch.ones_like(tensor))
def test(args, model, loss_func, loader_test, saver):
print(' [*] testing...')
model.eval()
# losses
test_loss = 0.
# intialization
num_batches = len(loader_test)
rtf_all = []
# run
with torch.no_grad():
for bidx, data in enumerate(loader_test):
fn = data['name'][0]
print('--------')
print('{}/{} - {}'.format(bidx, num_batches, fn))
# unpack data
for k in data.keys():
if k != 'name':
data[k] = data[k].to(args.device).float()
print('>>', data['name'][0])
# forward
st_time = time.time()
prelabel = model(data['mfcc'])
ed_time = time.time()
# loss
converted_prelabel = convert_tensor_values(prelabel)
print('prelabel:', converted_prelabel.view(-1).to('cpu').numpy())
print('target:', data['label'].view(-1).to('cpu').numpy())
loss = loss_func(prelabel,data['label'])
test_loss += loss.item()
# report
test_loss /= num_batches
# check
print(' [test_loss] test_loss:', test_loss)
print(' Real Time Factor', np.mean(rtf_all))
return test_loss
def train(args, initial_global_step, model, optimizer, loss_func, loader_train, loader_test):
# saver
saver = Saver(args, initial_global_step=initial_global_step)
# model size
params_count = utils.get_network_paras_amount({'model': model})
saver.log_info('--- model size ---')
saver.log_info(params_count)
# run
best_loss = np.inf
num_batches = len(loader_train)
model.train()
saver.log_info('======= start training =======')
for epoch in range(args.train.epochs):
for batch_idx, data in enumerate(loader_train):
saver.global_step_increment()
optimizer.zero_grad()
# unpack data
for k in data.keys():
if k != 'name':
data[k] = data[k].to(args.device)
# forward
prelabel = model(data['mfcc'])
# loss
loss = loss_func(prelabel,data['label'])
# handle nan loss
if torch.isnan(loss):
raise ValueError(' [x] nan loss ')
else:
# backpropagate
loss.backward()
optimizer.step()
# log loss
if saver.global_step % args.train.interval_log == 0:
saver.log_info(
'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | loss: {:.3f} | time: {} | step: {}'.format(
epoch,
batch_idx,
num_batches,
args.env.expdir,
args.train.interval_log/saver.get_interval_time(),
loss.item(),
saver.get_total_time(),
saver.global_step
)
)
saver.log_value({
'train/loss': loss.item()
})
# validation
if saver.global_step % args.train.interval_val == 0:
# save latest
saver.save_model(model, optimizer, postfix=f'{saver.global_step}')
# run testing set
test_loss = test(args, model, loss_func, loader_test, saver)
saver.log_info(
' --- <validation> --- \nloss: {:.3f}. '.format(
test_loss
)
)
saver.log_value({
'validation/loss': test_loss
})
model.train()
# save best model
if test_loss < best_loss:
saver.log_info(' [V] best model updated.')
saver.save_model(model, optimizer, postfix='best')
best_loss = test_loss