-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathneuralNet.py
203 lines (169 loc) · 5.94 KB
/
neuralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from __future__ import generators
from __future__ import generator_stop
from keras.models import Sequential,Model
from keras.layers import Conv2D,MaxPooling2D,BatchNormalization
from keras.layers import Activation,Flatten,Dropout,Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.utils import to_categorical
#from sklearn.metrics import classification_report
from skimage import transform,exposure,io
import matplotlib.pyplot as plt
import numpy as np
import random
import os
class NeuralNet:
@staticmethod
def build(width,height,depth,classes):
model=Sequential()
inputShape=(height,width,depth)
ChanDim=-1
#Conv2D->Relu->BatchNorm->MaxPool
#size=32x32
model.add(Conv2D(8,(5,5),padding="same",input_shape=inputShape))
model.add(Activation('relu'))
model.add(BatchNormalization(axis=ChanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
#size=16x16
#first set (Conv->ReLU->Conv->ReLU)*2->MaxPool
model.add(Conv2D(16,(3,3),padding="same"))
model.add(Activation('relu'))
model.add(BatchNormalization(axis=ChanDim))
model.add(Conv2D(16,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=ChanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
#size=3x3
#second set (Conv->ReLU->Conv->ReLU)*2->MaxPool
model.add(Conv2D(32,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=ChanDim))
model.add(Conv2D(32,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=ChanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
#Two sets of FC and softmax classifier
#first set
model.add(Flatten())
#model=Flatten()(model)
model.add(Dense(128))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
'''
#second set
model.add(Flatten())
#model=Flatten()(model)
model.add(Dense(128))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
'''
#softmax
model.add(Dense(classes))
model.add(Activation("softmax"))
return model
def setParams():
#hyperparams
num_epochs=30
init_lr=1e-3
bs=64
def imagAug():
aug=ImageDataGenerator(
rotation_range=10,
zoom_range=0.15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.15,
horizontal_flip=False,
vertical_flip=False,
fill_mode="nearest"
)
def train():
opt=Adam(lr=init_lr,decay=init_lr/(num_epochs*0.5))
model=TrafficSignNet.build(width=32,height=32,depth=3,classes=numLabels)
model.compile(loss="categorical_crossentropy",optimizer=opt,metrics=["accuracy"])
H=model.fit_generator(
aug.flow(trainX,trainY,batch_size=bs),
validation_data=(testX,testY),
steps_per_epoch=trainX.shape[0]//bs,
epochs=num_epochs,
class_weight=classWeight,
verbose=1
)
def load_model(path):
model=keras.load_model(model.h5)
def signs():
SIGNS=[
'ERROR',
'STOP',
'TURN LEFT',
'TURN RIGHT',
'DO NOT TURN LEFT',
'DO NOT TURN RIGHT',
'ONE WAY',
'SPEED LIMIT',
'OTHER'
]
def preds_filter():
#filter only signs from GTSRB datasets (for same video output)
for sign in signs.SIGNS:
for label in range(numLabels):
gtr=trainX[label]
set1=set(map(lambda:sign.lower(),sign.split('')))
set2=set(map(lambda:gtr,gtr.lower(),gtr.split('')))
if set1==set2:
continue
def trainNN(opt):
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
#print('#training images = %d' % dataset_size)
start_epoch, epoch_iter=1, 0
total_steps=(start_epoch-1) * dataset_size + epoch_iter
display_delta=total_steps % opt.display_freq
print_delta=total_steps % opt.print_freq
save_delta=total_steps % opt.save_latest_freq
for data in tqdm(dataset):
minibatch = 1
reset = model.inference(data['label'], data['inst'])
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('reset_image', util.tensor2im(reset.data[0]))])
img_path = data['path']
visualizer.save_images(webpage, visuals, img_path)
webpage.save()
def videoEncodingPreds():
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'main.avi')
opt.dataroot
opt.isTrain=True
opt.use_encoded_image=True
model = NeuralNet.build()
trainedModel = trainNN(model)
i=0
for data in tqdm(dataset):
iter_start_time = time.time()
total_steps+=1
epoch_iter+=1
#forward pass
losses, generated = model(Variable(data['label']), Variable(data['inst']),
Variable(data['image']), Variable(data['feat']), infer=True)
#sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['CNN'] + loss_dict['SVM']) * 0.5
loss_G = loss_dict['LNT'] + loss_dict.get('GTRSB',0) + loss_dict.get('main',0)
#results and errors
### print errors
errors = {k: v.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
#output images
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('trained_image', util.tensor2im(generated.data[0])),
('real_image', util.tensor2im(data['image'][0]))])
visualizer.display_current_results(visuals, i, total_steps)
#error
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
i+=1