-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
72 lines (61 loc) · 2.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from functools import lru_cache
import torch
import torch.nn as nn
class GRAMLayer(nn.Module):
def __init__(self, in_channels, out_channels, degrees = 3):
super(GRAMLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.degrees = degrees
self.beta_weights = nn.Parameter(torch.zeros(degrees + 1, dtype=torch.float32))
self.basis_weights = nn.Parameter(
torch.zeros(in_channels, out_channels, degrees + 1, dtype=torch.float32)
)
self.init_weights()
def init_weights(self):
nn.init.normal_(
self.beta_weights,
mean=0.0,
std=1.0 / (self.in_channels * (self.degrees + 1.0)),
)
nn.init.xavier_uniform_(self.basis_weights)
def beta(self, n, m):
return (
((m + n) * (m - n) * n**2) / (m**2 / (4.0 * n**2 - 1.0))
) * self.beta_weights[n]
@lru_cache(maxsize=128)
def get_basis(self, x, degree):
p0 = x.new_ones(x.size())
if degree == 0:
return p0.unsqueeze(-1)
p1 = x
basis = [p0, p1]
for i in range(2, degree + 1):
p2 = x * p1 - self.beta(i - 1, i) * p0
basis.append(p2)
p0, p1 = p1, p2
return torch.stack(basis, dim=-1)
def forward(self, x):
x = torch.tanh(x).contiguous()
basis = self.get_basis(x, self.degrees)
y = torch.einsum(
"b l d, l o d -> b o",
basis,
self.basis_weights
)
y = y.view(-1, self.out_channels)
return y
#Example that works for MNIST
class GRAM(nn.Module):
def __init__(self):
super(GRAM, self).__init__()
self.layers = nn.Sequential(
GRAMLayer(28 * 28, 32, 4),
nn.LayerNorm(32),
GRAMLayer(32, 16, 4),
nn.LayerNorm(16),
GRAMLayer(16, 10, 4)
)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.layers(x)