-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeansmodule.c
335 lines (261 loc) · 9.32 KB
/
kmeansmodule.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define PY_SSIZE_T_CLEAN
#include "Python.h"
typedef struct Node Node;
typedef struct Linked_list Linked_list;
/* - - - - - KMEANS ALGORITHM FUNCTION DEFINITIONS - - - - - */
int kmeans(double **d_vectors, double **centroids);
void update_single_centroid(double *centroid, Linked_list cluster, double **d_vectors);
void update_centroids(double **centroids, double **prev_centroids, Linked_list *clusters, double **d_vectors,
int *flag_stop);
void init_clusters(Linked_list **clusters);
void append_to_cluster(Linked_list *cluster, int d_vector_index);
void update_clusters(Linked_list **clusters, double **centroids, double **d_vectors);
void allocate_2D_array(void ***arr, int rows, int cols, size_t var_size);
void free_2D_array(void **arr, int rows);
void free_array_of_Linked_list(Linked_list *list, int rows);
void copy_K_first_d_vectors(double **copy_to, double **copy_from);
double d_distance(double *d_vector1, double *d_vector2);
/* - - - - - C PYTHON API FUNCTION DEFINITIONS - - - - - */
static PyObject *fit(PyObject *self, PyObject *args);
PyObject *build_PyCentroids(double **CCentroids);
PyObject *build_PyCentroids(double **CCentroids);
PyMODINIT_FUNC PyInit_mykmeanssp(void);
int parse_PyObject_to_2D_array(PyObject *PyArray_2D, double ***output_array_2D);
/* - - - - - GLOBAL VARIABLES - - - - - */
int K, iter, d, number_of_d_vectors;
double eps;
struct Node {
int d_vector_index;
Node *next;
};
struct Linked_list {
Node *head;
Node *tail;
int size;
};
/* - - - - - C PYTHON API - - - - - */
static PyObject *fit(PyObject *self, PyObject *args) {
PyObject *PyD_vectors, *PyCentroids;
double **CD_vectors, **CCentroids;
if (!PyArg_ParseTuple(args, "OOid", &PyD_vectors, &PyCentroids, &iter, &eps))
return NULL;
number_of_d_vectors = PyObject_Length(PyD_vectors);
d = PyObject_Length(PyList_GetItem(PyD_vectors, 0));
K = PyObject_Length(PyCentroids);
if(parse_PyObject_to_2D_array(PyD_vectors, &CD_vectors) != 0)
return NULL;
if(parse_PyObject_to_2D_array(PyCentroids, &CCentroids) != 0)
return NULL;
/* Kmeans Algorithm */
if (kmeans(CD_vectors, CCentroids) != 0)
return NULL;
/* CCentroids are the final centroids */
PyCentroids = build_PyCentroids(CCentroids);
free_2D_array((void **) CD_vectors, number_of_d_vectors);
free_2D_array((void **) CCentroids, K);
return PyCentroids;
}
PyObject *build_PyCentroids(double **CCentroids){
PyObject *PyCentroids, *PyCentroid_single, *element;
int r,c;
PyCentroids = PyList_New(K);
for(r = 0; r<K; r++){
PyCentroid_single = PyList_New(d);
for(c = 0; c<d; c++){
element = PyFloat_FromDouble(CCentroids[r][c]);
PyList_SET_ITEM(PyCentroid_single, c, element);
}
PyList_SET_ITEM(PyCentroids, r, PyCentroid_single);
}
return PyCentroids;
}
static PyMethodDef kmeansMethods[] = {
{"fit",
(PyCFunction) fit,
METH_VARARGS,
PyDoc_STR("Kmeans Algorithm\nReturns the final centroids list.")},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef kmeansmodule = {
PyModuleDef_HEAD_INIT,
"mykmeanssp",
NULL,
-1,
kmeansMethods
};
PyMODINIT_FUNC PyInit_mykmeanssp(void) {
return PyModule_Create(&kmeansmodule);
}
int parse_PyObject_to_2D_array(PyObject *PyArray_2D, double ***CArray_2D) {
int rows, cols, r, c;
PyObject *d_vector, *element;
rows = PyObject_Length(PyArray_2D);
if (rows == -1 || rows == 0)
/* An error occurred while getting the length OR the array is empty */
return 1;
cols = PyObject_Length(PyList_GetItem(PyArray_2D, 0));
/* Assuming the all rows carry the same length */
if (cols == -1)
return 1;
/* Build CArray_2D from PyArray_2D */
(*CArray_2D) = (double **) malloc(rows * sizeof(double *));
if((*CArray_2D) == NULL)
return 1;
for (r = 0; r < rows; r++) {
d_vector = PyList_GetItem(PyArray_2D, r);
if (cols != PyObject_Length(d_vector))
/*PyArray_2D must contain equal row's length for all rows*/
return 1;
(*CArray_2D)[r] = (double *) malloc(cols * sizeof(double));
if((*CArray_2D)[r] == NULL)
return 1;
for (c = 0; c < cols; c++) {
element = PyList_GetItem(d_vector, c);
(*CArray_2D)[r][c] = PyFloat_AsDouble(element);
}
}
return 0;
}
/* - - - - - KMEANS ALGORITHM - - - - - */
int kmeans(double **d_vectors, double **centroids) {
int i, flag_stop;
double **prev_centroids;
Linked_list *clusters;
/* Allocate dynamic memory for 2D arrays. */
allocate_2D_array((void ***) &prev_centroids, K, d, sizeof(double));
/* -- Kmeans Algorithm -- */
flag_stop = 0;
for (i = 0; i < iter && !flag_stop; i++) {
if (i != 0)
free_array_of_Linked_list(clusters, K);
update_clusters(&clusters, centroids, d_vectors);
update_centroids(centroids, prev_centroids, clusters, d_vectors, &flag_stop);
}
/* Free all dynamic memory created in the method. */
free_array_of_Linked_list(clusters, K);
free_2D_array((void **) prev_centroids, K);
return 0;
}
/* - - - - - CENTROIDS - - - - - */
void update_single_centroid(double *centroid, Linked_list cluster, double **d_vectors) {
int i, d_vector_index;
double sum;
Node *ptr_node;
for (i = 0; i < d; i++) {
sum = 0;
ptr_node = cluster.head;
while (ptr_node != NULL) {
d_vector_index = ptr_node->d_vector_index;
sum += d_vectors[d_vector_index][i];
ptr_node = ptr_node->next;
}
centroid[i] = sum / cluster.size;
}
}
/*
Calculates the new values of the centroids.
flag_stop=1 if all centroids moved a distance less than eps (epsilon). o.w flag_stop=0
*/
void update_centroids(double **centroids, double **prev_centroids, Linked_list *clusters, double **d_vectors,
int *flag_stop) {
int c;
*flag_stop = 1; /* flag_stop is 1 iff all centroids changed to distance smaller than eps. */
copy_K_first_d_vectors(prev_centroids, centroids);
for (c = 0; c < K; c++) {
update_single_centroid(centroids[c], clusters[c], d_vectors);
if (*flag_stop == 0 || d_distance(prev_centroids[c], centroids[c]) >= eps)
*flag_stop = 0;
}
}
/* - - - - - CLUSTERS - - - - - */
void init_clusters(Linked_list **clusters) {
int k;
*clusters = (Linked_list *) malloc(K * sizeof(Linked_list));
for (k = 0; k < K; k++) {
/* Empty linked list */
(*clusters)[k].head = NULL;
(*clusters)[k].tail = NULL;
(*clusters)[k].size = 0;
}
}
void append_to_cluster(Linked_list *cluster, int d_vector_index) {
/* Set new node object in memory */
Node *new_node = (Node *) malloc(sizeof(Node));
new_node->d_vector_index = d_vector_index;
new_node->next = NULL;
/* Append new node to linked list */
cluster->size++;
if (cluster->head == NULL) {
cluster->head = new_node;
cluster->tail = new_node;
} else {
cluster->tail->next = new_node;
cluster->tail = cluster->tail->next;
}
}
void update_clusters(Linked_list **clusters, double **centroids, double **d_vectors) {
int v, k, min_cluster_index;
double min_d_distance, curr_d_distance;
/* Old information of the clusters is not important, initialize them as new. */
init_clusters(clusters);
for (v = 0; v < number_of_d_vectors; v++) {
min_d_distance = -1;
min_cluster_index = 0;
for (k = 0; k < K; k++) {
curr_d_distance = d_distance(d_vectors[v], centroids[k]);
if (min_d_distance == -1 || curr_d_distance < min_d_distance) {
min_d_distance = curr_d_distance;
min_cluster_index = k;
}
}
/* Add d_vectors[v] to min_cluster_index cluster. */
append_to_cluster(&((*clusters)[min_cluster_index]), v);
}
}
/* - - - - - DYNAMIC MEMORY HANDLE - - - - - */
void allocate_2D_array(void ***arr, int rows, int cols, size_t var_size) {
int i;
*arr = (void **) malloc(rows * sizeof(void *));
for (i = 0; i < rows; i++)
(*arr)[i] = (void *) malloc(cols * sizeof(var_size));
}
void free_2D_array(void **arr, int rows) {
int i;
for (i = 0; i < rows; i++)
free(arr[i]);
free(arr);
}
void free_array_of_Linked_list(Linked_list *list, int rows) {
int i;
Node *next, *curr;
for (i = 0; i < rows; i++) {
curr = list[i].head;
while (curr != NULL) {
next = curr->next;
free(curr);
curr = next;
}
}
free(list);
}
/* - - - - - FUNCTIONS - - - - - */
void copy_K_first_d_vectors(double **copy_to, double **copy_from) {
/* copy_from could be d_vectors or a different copy_to 2D array */
int i, j;
for (i = 0; i < K; i++) {
/* Assign K first arrays of copy_from as copy_to */
for (j = 0; j < d; j++)
copy_to[i][j] = copy_from[i][j];
}
}
double d_distance(double *d_vector1, double *d_vector2) {
int i;
double d_distance;
d_distance = 0;
for (i = 0; i < d; i++)
d_distance += pow(d_vector2[i] - d_vector1[i], 2);
return sqrt(d_distance);
}