-
Notifications
You must be signed in to change notification settings - Fork 29
/
train_with_gan.py
90 lines (78 loc) · 5.28 KB
/
train_with_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from util.util import AverageMeter, set_seed
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
# Set random seed for this experiment
set_seed(opt.seed)
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
print('Dataset size:', len(dataset))
meters_trn = {stat: AverageMeter() for stat in model.loss_names}
opt.stage = 'coarse' if epoch < opt.coarse_epoch else 'fine'
model.netDecoder.locality = True if epoch < opt.no_locality_epoch else False
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
if epoch < opt.gan_train_epoch:
# print('iter {}, training attn'.format(i))
layers, avg_grad = model.optimize_parameters(opt.display_grad, epoch) # calculate loss functions, get gradients, update network weights
if opt.display_grad and total_iters % opt.display_freq == 0:
visualizer.display_grad(layers, avg_grad)
if opt.custom_lr and opt.stage == 'coarse':
model.update_learning_rate() # update learning rates at the beginning of every step
else: # adv loss in
if i % 2 == 0: # generator
if epoch < opt.gan_train_epoch + opt.gan_in:
# print('iter {}, do not train generator'.format(i))
continue
# print('iter {}, training generator'.format(i))
layers, avg_grad = model.optimize_parameters(opt.display_grad, epoch) # calculate loss functions, get gradients, update network weights
if opt.custom_lr and opt.stage == 'coarse':
model.update_learning_rate() # update learning rates at the beginning of every step
else:
# print('iter {}, training disc'.format(i))
model.forward_disc(i + 1)
model.d_scheduler.step()
if epoch < opt.gan_train_epoch + opt.gan_in:
# print('iter {}, no intermediate results to show'.format(i))
continue
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
losses = model.get_current_losses()
for loss_name in model.loss_names:
meters_trn[loss_name].update(float(losses[loss_name]))
losses[loss_name] = meters_trn[loss_name].avg
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
print('learning rate:', model.optimizers[0].param_groups[0]['lr'])
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
if not opt.custom_lr:
model.update_learning_rate() # update learning rates at the end of every epoch.