-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_testing.py
285 lines (202 loc) · 8.19 KB
/
main_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 30 15:28:51 2022
@author: Rodrigo
"""
import matplotlib.pyplot as plt
import numpy as np
import torch
import pydicom
import os
import time
import pathlib
import argparse
from tqdm import tqdm
from scipy.io import loadmat
# Own codes
from libs.models import ResResNet, UNet2, RED, ResNet
from libs.utilities import load_model, makedir
def VST(img, lambda_e):
# Subtract offset and divide it by the gain of the quantum noise
img_norm = (img - tau) / lambda_e
# Apply GAT (Generalized Anscombe VST)
img = 2 * np.sqrt(img_norm + 3. / 8. + sigma_e ** 2)
return img
def img2rois(img_ld, lambda_e):
h, w = img_ld.shape
# How many Rois fit in the image?
n_h = h % 64
n_w = w % 64
if n_h == 0:
h_pad = h
else:
h_pad = (h // 64 + 1) * 64
if n_w == 0:
w_pad = w
else:
w_pad = (w // 64 + 1) * 64
# Calculate how much padding is necessary and sum 64 for the frontiers
padding = (((h_pad - h) // 2 + 64, (h_pad - h) // 2 + 64),
((w_pad - w) // 2 + 64, (w_pad - w) // 2 + 64))
# Pad the image
img_ld_pad = np.pad(img_ld, padding, mode='reflect')
lmbd_e_pad = np.pad(lambda_e, padding, mode='reflect')
n_h = h_pad // 64
n_w = w_pad // 64
# Allocate memory to speed up the for loop
rois = np.empty((n_h * n_w, 2, 192, 192), dtype='float32')
nRoi = 0
# Get the ROIs
for i in range(n_h):
for j in range(n_w):
rois[nRoi, 0, :, :] = img_ld_pad[i * 64: (i + 3) * 64, j * 64:(j + 3) * 64]
rois[nRoi, 1, :, :] = lmbd_e_pad[i * 64: (i + 3) * 64, j * 64:(j + 3) * 64]
nRoi += 1
return rois, img_ld_pad.shape
def rois2img(rst_rois, original_shape, padded_shape):
rst_img = np.empty((padded_shape))
n_h = (padded_shape[0] // 64) - 2
n_w = (padded_shape[1] // 64) - 2
nRoi = 0
# Reconstruct image format
for i in range(n_h):
for j in range(n_w):
rst_img[(i + 1) * 64:(i + 2) * 64, (j + 1) * 64:(j + 2) * 64] = rst_rois[nRoi, 0, 64:128, 64:128]
nRoi += 1
org_h, org_w = original_shape
pad_h, pad_w = padded_shape
# How much to crop?
start_w = (pad_w - org_w) // 2
start_h = (pad_h - org_h) // 2
# Crop image
rst_img = rst_img[start_h:start_h + org_h, start_w:start_w + org_w]
return rst_img
def model_forward(model, img_ld, lambda_e, batch_size):
# Change model to eval
model.eval()
# Extract ROIs
rois, padded_shape = img2rois(img_ld, lambda_e)
# Allocate memory to speed up the for loop
rst_rois = np.empty_like(rois)
for x in range(0, rois.shape[0], batch_size):
# Get the batch and send to GPU
batch = torch.from_numpy(rois[x:x + batch_size]).to(device)
# Forward through the model
with torch.no_grad():
batch = model(batch)
# Get from GPU
rst_rois[x:x + batch_size] = batch.to('cpu').numpy()
# Construct the image
rst_img = rois2img(rst_rois, img_ld.shape, padded_shape)
return rst_img
def test(model, path_data, path2write, mAsLowDose, batch_size):
global min_global_img, max_global_img
path_data_ld = path_data + '31_' + str(mAsLowDose)
file_names = list(pathlib.Path(path_data_ld).glob('**/*.dcm'))
elapsed_times = []
for file_name in tqdm(file_names):
file_name = str(file_name)
proj_num = int(file_name.split('/')[-1].split('.')[0][4:])
# Read dicom image
dcmH = pydicom.dcmread(file_name)
# Read dicom image pixels
img_ld = dcmH.pixel_array.astype('float32')
rst_img = img_ld.copy()
lambda_e = lambda_e_nproj[:, -img_ld.shape[1]:, proj_num]
# img_ld_vst = VST(img_ld, lambda_e)
#
# mask = img_ld < 993 # 1157:
#
# local_min = img_ld_vst[mask].min()
# local_max = img_ld_vst[mask].max()
#
# if local_min < min_global_img:
# min_global_img = local_min
#
# if local_max > max_global_img:
# max_global_img = local_max
start = time.time()
# Forward through model
rst_img[:, 1156:] = model_forward(model, img_ld[:, 1156:], lambda_e[:, 1156:], batch_size)
end = time.time()
elapsed_times.append(end - start)
folder_name = path2write + model_description + '_' + file_name.split('/')[-2]
file2write_name = 'DL_' + file_name.split('/')[-1]
# Create output dir (if needed)
makedir(folder_name)
# Copy the restored data to the original dicom header
dcmH.PixelData = np.uint16(rst_img)
# Write dicom
pydicom.dcmwrite(os.path.join(folder_name, file2write_name),
dcmH,
write_like_original=True)
print(np.mean(elapsed_times))
return
# %%
if __name__ == '__main__':
ap = argparse.ArgumentParser(description='Restore low-dose mamography')
ap.add_argument("--rnw", type=float, default=0.1, required=True,
help="Residual noise weight. (default: 50)")
ap.add_argument("--model", type=str, default='', required=True,
help="Model architecture")
ap.add_argument("--fmw", type=str, required=True,
help="Framework")
# sys.argv = sys.argv + ['--rnw', '0.0', '--model', 'ResResNet', '--nep', '2', '--fmw', 'Noise2Sim']#, 'Noise2Sim']
args = vars(ap.parse_args())
model_type = args['fmw']
rnw = args['rnw']
batch_size = 50
min_global_img = np.inf
max_global_img = 0
# Noise scale factor
red_factor = 0.5
red_factor_self_learning = 50 # red_factor which self learning was trained
red_factor_int = int(red_factor * 100)
mAsFullDose = 60
mAsLowDose = int(mAsFullDose * red_factor)
path_data = "/home/laviusp/Documents/Rodrigo_Vimieiro/phantom/"
# path_data = '/media/rodrigo/Dados_2TB/Imagens/UPenn/Phantom/Anthropomorphic/DBT/'
path_models = "final_models/"
path2write = path_data + "Restorations/31_{}/".format(mAsLowDose)
Parameters_Hol_DBT_R_CC_All = loadmat('data/Parameters_Hol_DBT_R_CC_All.mat')
tau = Parameters_Hol_DBT_R_CC_All['tau'][0][0]
lambda_e_nproj = Parameters_Hol_DBT_R_CC_All['lambda']
sigma_e = Parameters_Hol_DBT_R_CC_All['sigma_E'][0][0]
del Parameters_Hol_DBT_R_CC_All
# Test if there is a GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
makedir(path2write)
# 181.51 / 58.0 valores em VST do phantom (dentro da mama)
# 230 / 58.0 valores em VST do phantom (total fora os pixels saturados)
# 420.777562 / 19.935268 valores em VST clinicas
maxGAT = 420.777562
minGAT = 19.935268
# Create model
if args['model'] == 'RED':
model = RED(tau, sigma_e, red_factor, maxGAT, minGAT)
elif args['model'] == 'UNet2':
model = UNet2(tau, sigma_e, red_factor, maxGAT, minGAT, residual=True)
elif args['model'] == 'ResResNet':
model = ResResNet(tau, sigma_e, red_factor, maxGAT, minGAT)
else:
raise ValueError('Unknown model')
if model_type == 'Noise2Sim':
modelSavedNoStandard = True
model_description = "{}_DBT_Noise2Sim_{:d}".format(model.__class__.__name__,
red_factor_self_learning)
path_final_model = path_models + "model_{}.pth".format(model_description)
else:
modelSavedNoStandard = False
model_description = "{}_DBT_VSTasLayer-MNSE_rnw{}_{:d}".format(model.__class__.__name__,
rnw,
red_factor_int)
path_final_model = path_models + "model_{}.pth".format(model_description)
# Load pre-trained model parameters (if exist)
_ = load_model(model, path_final_model=path_final_model, amItesting=True, modelSavedNoStandard=modelSavedNoStandard)
# Send it to device (GPU if exist)
model = model.to(device)
# Set it to eval mode
model.eval()
print("Running test on {}. of 31_{}mAs images".format(device, mAsLowDose))
test(model, path_data, path2write, mAsLowDose, batch_size)