-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_training.py
280 lines (206 loc) · 9.54 KB
/
main_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 11 14:17:05 2022
@author: Rodrigo
"""
import matplotlib.pyplot as plt
import torch
import time
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# Own codes
from libs.models import Gen, Disc
from libs.utilities import load_model_gan, image_grid_gan, makedir, set_requires_grad
from libs.dataset import VCTDataset
#%%
def train(gen_AB,
gen_BA,
dis_B,
dis_A,
gen_opt,
dis_B_opt,
dis_A_opt,
epoch,
train_loader,
device,
summarywriter,
lmb_identity=0.1,
lmb_cycle=10):
# Enable trainning
gen_AB.train()
gen_BA.train()
dis_B.train()
dis_A.train()
adv_criterion = torch.nn.MSELoss()
cycle_criterion = torch.nn.L1Loss()
identity_criterion = torch.nn.L1Loss()
for step, (real_A, real_B) in enumerate(tqdm(train_loader)):
real_A = real_A.to(device) # correlated noise
real_B = real_B.to(device) # uncorrelated noise
# ---------------------
### Forward ###
fake_B = gen_AB(real_A) # G_A(A)
rec_A = gen_BA(fake_B) # G_B(G_A(A))
fake_A = gen_BA(real_B) # G_B(B)
rec_B = gen_AB(fake_A) # G_A(G_B(B))
idt_B = gen_AB(real_B) # G_A(B)
idt_A = gen_BA(real_A) # G_B(A)
######### Update Generator #########
set_requires_grad([dis_A, dis_B], requires_grad = False)
# Zero all grads
gen_opt.zero_grad()
# Identity Loss
identity_loss_A = identity_criterion(idt_B, real_B)
identity_loss_B = identity_criterion(idt_A, real_A)
gen_identity_loss = (identity_loss_A + identity_loss_B) * lmb_identity
# Adversarial Loss
disc_fake_A_hat = dis_A(fake_A)
adv_loss_BA = adv_criterion(disc_fake_A_hat, torch.ones_like(disc_fake_A_hat))
disc_fake_B_hat = dis_B(fake_B)
adv_loss_AB = adv_criterion(disc_fake_B_hat, torch.ones_like(disc_fake_B_hat))
gen_adversarial_loss = (adv_loss_AB + adv_loss_BA) * 0.5
# Cycle-consistency Loss
cycle_loss_AA = cycle_criterion(rec_A, real_A)
cycle_loss_BB = cycle_criterion(rec_B, real_B)
gen_cycle_loss = (cycle_loss_AA + cycle_loss_BB) * lmb_cycle
# Total gen loss
gen_loss = gen_identity_loss + gen_adversarial_loss + gen_cycle_loss
### Backpropagation ###
# Calculate all grads
gen_loss.backward()
# Update weights and biases based on the calc grads
gen_opt.step()
######### Update Discriminator A #########
set_requires_grad(dis_A, requires_grad = True)
# Zero all grads
dis_A_opt.zero_grad()
disc_fake_A_hat = dis_A(fake_A.detach()) # Detach generator
disc_fake_A_loss = adv_criterion(disc_fake_A_hat, torch.zeros_like(disc_fake_A_hat))
disc_real_A_hat = dis_A(real_A)
disc_real_A_loss = adv_criterion(disc_real_A_hat, torch.ones_like(disc_real_A_hat))
disc_loss_A = (disc_fake_A_loss + disc_real_A_loss) * 0.5
### Backpropagation ###
# Calculate all grads
disc_loss_A.backward()
# Update weights and biases based on the calc grads
dis_A_opt.step()
######### Update Discriminator B #########
set_requires_grad(dis_B, requires_grad = True)
# Zero all grads
dis_B_opt.zero_grad()
disc_fake_B_hat = dis_B(fake_B.detach()) # Detach generator
disc_fake_B_loss = adv_criterion(disc_fake_B_hat, torch.zeros_like(disc_fake_B_hat))
disc_real_B_hat = dis_B(real_B)
disc_real_B_loss = adv_criterion(disc_real_B_hat, torch.ones_like(disc_real_B_hat))
disc_loss_B = (disc_fake_B_loss + disc_real_B_loss) * 0.5
### Backpropagation ###
# Calculate all grads
disc_loss_B.backward()
# Update weights and biases based on the calc grads
dis_B_opt.step()
# ---------------------
# Print images to tensorboard
if step % 20 == 0:
# Write Gen Loss to tensorboard
summarywriter.add_scalar('Loss/GEN-Iden',
gen_identity_loss.item(),
epoch * len(train_loader) + step)
summarywriter.add_scalar('Loss/GEN-Adv',
gen_adversarial_loss.item(),
epoch * len(train_loader) + step)
summarywriter.add_scalar('Loss/GEN-Cyc',
gen_cycle_loss.item(),
epoch * len(train_loader) + step)
summarywriter.add_scalar('Loss/GEN-Total',
gen_loss.item(),
epoch * len(train_loader) + step)
summarywriter.add_scalar('Loss/DIS_A',
disc_loss_A.item(),
epoch * len(train_loader) + step)
summarywriter.add_scalar('Loss/DIS_B',
disc_loss_B.item(),
epoch * len(train_loader) + step)
summarywriter.add_figure('Plot/train',
image_grid_gan(real_A[18,0,5:-5,5:-5],
fake_A[18,0,5:-5,5:-5],
real_B[18,0,5:-5,5:-5],
fake_B[18,0,5:-5,5:-5]),
epoch * len(train_loader) + step,
close=True)
#%%
if __name__ == '__main__':
# Noise scale factor
mAsFullDose = 360
mAsLowDose = 90
red_factor = mAsLowDose / mAsFullDose
path_data = "data/"
path_models = "final_models/"
path_logs = "final_logs/{}-{}mAs".format(time.strftime("%Y-%m-%d-%H%M%S", time.localtime()), mAsLowDose)
path_final_model = path_models + "cGAN_ResNet_Decor-{}mAs.pth".format(mAsLowDose)
LRg = 1e-4/10
LRd = 1e-4/10
batch_size = 32
n_epochs = 30
dataset_path = '{}DBT-PMMA_Decor_training_{}mAs.h5'.format(path_data,mAsLowDose)
# Tensorboard writer
summarywriter = SummaryWriter(log_dir=path_logs)
makedir(path_models)
makedir(path_logs)
# Test if there is a GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Create models
gen_AB = Gen()
gen_BA = Gen()
dis_B = Disc()
dis_A = Disc()
# Create the optimizer and the LR scheduler
gen_opt = torch.optim.Adam(list(gen_AB.parameters()) + list(gen_BA.parameters()), lr=LRg, betas=(0.5, 0.999))
dis_B_opt = torch.optim.Adam(dis_B.parameters(), lr=LRd, betas=(0.5, 0.999))
dis_A_opt = torch.optim.Adam(dis_A.parameters(), lr=LRd, betas=(0.5, 0.999))
gen_sch = torch.optim.lr_scheduler.MultiStepLR(gen_opt, milestones=[10, 20], gamma=0.5)
dis_B_sch = torch.optim.lr_scheduler.MultiStepLR(dis_B_opt, milestones=[10, 20], gamma=0.5)
dis_A_sch = torch.optim.lr_scheduler.MultiStepLR(dis_A_opt, milestones=[10, 20], gamma=0.5)
# Send it to device (GPU if exist)
gen_AB = gen_AB.to(device)
gen_BA = gen_BA.to(device)
dis_B = dis_B.to(device)
dis_A = dis_A.to(device)
# Load gen pre-trained model parameters (if exist)
start_epoch = load_model_gan([gen_AB,gen_BA,dis_B,dis_A],
[gen_opt, dis_B_opt, dis_A_opt],
[gen_sch, dis_B_sch, dis_A_sch],
path_final_model=path_final_model,
path_pretrained_model=None)
start_epoch = 0
# Create dataset helper
train_set = VCTDataset(dataset_path, red_factor, vmin=17276., vmax=10084.)
# Create dataset loader
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=batch_size,
shuffle=True,
pin_memory=True)
# Loop on epochs
for epoch in range(start_epoch, n_epochs):
print("Epoch:[{}] LR:{}".format(epoch, gen_opt.state_dict()['param_groups'][0]['lr']))
# Train the model for 1 epoch
train(gen_AB, gen_BA, dis_B, dis_A, gen_opt, dis_B_opt, dis_A_opt, epoch, train_loader, device, summarywriter)
# Update LR
gen_sch.step()
dis_A_sch.step()
dis_B_sch.step()
# Save the model
torch.save({
'epoch': epoch,
'gen_AB_state_dict': gen_AB.state_dict(),
'gen_BA_state_dict': gen_BA.state_dict(),
'dis_A_state_dict': dis_A.state_dict(),
'dis_B_state_dict': dis_B.state_dict(),
'gen_optimizer_state_dict': gen_opt.state_dict(),
'dis_A_optimizer_state_dict': dis_A_opt.state_dict(),
'dis_B_optimizer_state_dict': dis_B_opt.state_dict(),
'gen_scheduler_state_dict': gen_sch.state_dict(),
'dis_A_scheduler_state_dict': dis_A_sch.state_dict(),
'dis_B_scheduler_state_dict': dis_B_sch.state_dict(),
}, path_final_model)