-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_results.py
736 lines (632 loc) · 32.5 KB
/
analysis_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
import json
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import csv
import sys
import seaborn as sns
import string
import re
from collections import Counter
nshots=16
need_reeval = False
class ResultAnalyzer:
def __init__(self, weight_fv=None, retrieve_method="retriever"):
self.weight_fv = 2.0
self.retrieve_method = retrieve_method
self.datasets = {
'nlu': ["superglue_rte", "superglue_wic", "glue_qnli", "glue_sst2", "glue_mnli"], #,
'reasoning': ["arc_challenge", "bbh_boolean_expressions", "bbh_date_understanding",
"bbh_reasoning_about_colored_objects", "bbh_temporal_sequences"],
'knowledge': ["boolq", "commonsense_qa", "hellaswag", "openbookqa"],
'math': ["math_qa", "mmlu_pro_math"],
'safety': ["bbq_age", "crows_pairs", "ethics_justice", "ethics_commonsense"], #
'unseen': ["glue_cola", "bbq_religion", "deepmind",
"mmlu_high_school_psychology", "bbh_logical_deduction_five_objects"]
}
@staticmethod
def nested_dict():
return defaultdict(lambda: defaultdict(list))
@staticmethod
def safe_mean(arr):
"""Calculate mean of numeric values, ignoring NaN"""
return float(np.mean([x for x in arr if isinstance(x, (int, float)) and not np.isnan(x)]))
def _get_filtered_files(self, results_dir, recall):
"""Get relevant files based on filtering criteria"""
all_files = os.listdir(results_dir)
file_list = [f for f in all_files if all(x in f for x in
[self.retrieve_method, f"{self.weight_fv}fv", f"{recall}recall"])]
return [f for f in file_list if "parsed" not in f]
def get_answer_type(self, answer):
if answer in string.ascii_uppercase:
return 'capital'
elif answer in ['True', 'False', 'Neither']:
return 'true_false'
elif answer in ['Yes', 'No']:
return 'yes_no'
elif answer in ['positive', 'negative']:
return 'positive_negative'
elif answer.isdigit():
return 'number'
return None
def find_answer(self, text, answer):
# arc chanllenge, bbh date understanding, bbh reasoning about colored, bbh temporal sequences, bbq age, bbq religion, commonsenseqa, crows_pairs, deepmind, hellaswag, mathqa, mmlu high school psychology, MMLU pro math, openbook qa: ABC
# bbh boolean, boolq, superglue rte: true/false
# ethics commonsense, ethics justice, glue cola, glue qnli, superglue wic: Yes/No
# glue mnli : True False Neither
# glue sst2: positive / negative
patterns = {
'capital': r'([A-Z])(?:\.|:|<\|eot_id\|>)?\b',
'true_false': r'\b(True|False|Neither)(?:\.|:|<\|eot_id\|>)?\b',
'number': r'(\d+)(?:\.|:|<\|eot_id\|>)?\b',
'yes_no': r'\b(Yes|No)(?:\.|:|<\|eot_id\|>)?\b',
'positive_negative': r'\b(positive|negative|Positive|Negative)(?:\.|:|<\|eot_id\|>)?\b'
}
# Strip the expected answer
answer = answer.strip()
pattern_type = self.get_answer_type(answer)
if pattern_type == None: breakpoint()
assert pattern_type is not None
pattern = patterns[pattern_type]
text = text.replace("X<|eot_id|>", "")
if "answer" in text:
p = text.split("answer")[-1]
# breakpoint()
for pattern in patterns.values():
matches = re.findall(pattern, p)
if len(matches) > 0:
pred_answer = matches[0].strip().replace("<|eot_id|>", "").strip(".").strip(":").lower()
if matches and pred_answer== answer.lower():
return 1, pred_answer
# Check each pattern
matches = re.findall(pattern, text)
if len(matches) > 0:
pred_answer = matches[-1].strip().replace("<|eot_id|>", "").strip(".").strip(":").lower()
if matches and pred_answer== answer.lower():
return 1, pred_answer
try:
return 0, pred_answer
except:
return 0, None
def reeval(self, item_list, dataset = None):
zs_acc_list = []
intervene_acc_list = []
pred_results = []
for g in item_list["generation"]:
zs_acc, pred_answer = self.find_answer(g["clean_output"], g["label"])
zs_acc_list.append(zs_acc)
intervene_acc, intervene_pred_answer = self.find_answer(g["intervene_output"], g["label"])
intervene_acc_list.append(intervene_acc)
item = {
"clean_output": g["clean_output"],
"clean_parsed_output": pred_answer,
"zs_acc": zs_acc,
"intervene_output": g["intervene_output"],
"intervene_parsed_answer": intervene_pred_answer,
"label": g["label"].strip(),
"intervene_acc": intervene_acc
}
pred_results.append(item)
return sum(zs_acc_list) / len(zs_acc_list), sum(intervene_acc_list)/len(intervene_acc_list), pred_results
def _process_data_entry(self, data, all_results, category, dataset_name, results_dir):
"""Process a single data entry and update results dictionary"""
if 'test_zero-shot_acc' not in data.keys():
return
metrics = all_results[category][dataset_name]
# Process test accuracy
if need_reeval:
zs_acc, intervene_acc, pred_results = self.reeval(data, dataset_name)
else:
zs_acc, intervene_acc = float(data['test_zero-shot_acc']), (float(data['test_acc'][str(data["icl_best_layer"])])
if isinstance(data['test_acc'], dict)
else float(data['test_acc']))
metrics["test_zero_acc"].append(zs_acc)
metrics["test_intervene_acc"].append(intervene_acc)
metrics["harm"].append(int(intervene_acc < zs_acc))
metrics["retrieve_acc"].append(float(data['retrieve_acc']))
# Process timing and length metrics
metrics["0shot_time"].append(
(float(data['clean_time'])/len(data["generation"])))
metrics["intervene_time"].append(
(float(data['intervene_time'])/len(data["generation"])))
if "retrieve_time" in data.keys():
metrics["retrieve_time"].append(
(float(data["retrieve_time"])/len(data["generation"])))
metrics["zs_length"].append(float(data['zs_lengths']))
# Calculate chosen state numbers
state_num = sum(len(item["chosen_states"])
for item in data["generation"])
metrics["chosen_state_num"].append(
float(state_num/len(data["generation"])))
# Process BM25 results if available
# print("valid" not in results_dir and "bm25_results" in data.keys() and data["bm25_results"] != {})
if "valid" not in results_dir and "bm25_results" in data.keys() and data["bm25_results"] != {}:
bm25_results = data["bm25_results"]
if need_reeval:
zs_acc, intervene_acc, bm25_pred_results = self.reeval(bm25_results)
else:
zs_acc, intervene_acc = float(bm25_results["acc"]), float(bm25_results["+tv_acc"])
metrics["bm25_acc"].append(zs_acc)
metrics["bm25_length"].append(float(bm25_results["length"]))
metrics["bm25_time"].append(
float(bm25_results["time"])/len(data["generation"]))
metrics["bm25_tv"].append(intervene_acc)
# Process nshots results
if "nshots_results" in data.keys() and data["nshots_results"][f"{nshots}shot_results"] != {}:
for key in data["nshots_results"].keys():
if need_reeval:
zs_acc, intervene_acc, nshot_pred_answer = self.reeval((data["nshots_results"][key]))
else:
zs_acc, intervene_acc = float(data["nshots_results"][key]["acc"]), float(data["nshots_results"][key]["+tv_acc"])
all_results[category][dataset_name][f"{key.split('_')[0]}_acc"].append(zs_acc)
all_results[category][dataset_name][f"{key.split('_')[0]}_tv"].append(intervene_acc)
all_results[category][dataset_name][f"{key.split('_')[0]}_length"].append(
float(data["nshots_results"][key]["length"]))
all_results[category][dataset_name][f"{key.split('_')[0]}_time"].append(
float(data["nshots_results"][key]["time"])/len(data["generation"]))
used_states = []
for g in data["generation"]:
used_states+=g["chosen_states"]
if need_reeval: return pred_results, used_states
else: return None, used_states
def _format_results_table(self, all_results):
"""Format results into a readable table"""
headers = ["Category", "dataset"] + list(
all_results[next(iter(all_results))][
next(iter(all_results[next(iter(all_results))]))
].keys()
)
widths = [15, 30] + [15] * (len(headers) - 2)
return headers, widths
def _save_results_csv(self, headers, widths, all_results):
"""Save results to CSV file"""
with open('results.csv', 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(headers)
all_averages = defaultdict(list)
unseen_averages = defaultdict(list)
for category, category_data in all_results.items():
category_averages = defaultdict(list)
for dataset, metrics in category_data.items():
values = [category, dataset] + [
self.safe_mean(
metrics[h]) * (100 if "time" not in h and "length" not in h and "state_num" not in h else 1)
for h in headers[2:]
]
csvwriter.writerow(values)
for key, value in zip(headers[2:], values[2:]):
category_averages[key].append(value)
if category != "unseen":
for key in headers[2:]:
all_averages[key].append(
self.safe_mean(category_averages[key]))
else:
for key in headers[2:]:
unseen_averages[key].append(
self.safe_mean(category_averages[key]))
avg_values = [f"{category} Average", ""] + [
self.safe_mean(category_averages[key]) for key in headers[2:]
]
csvwriter.writerow(avg_values)
csvwriter.writerow([])
final_all_averages = {
key: self.safe_mean(all_averages[key]) for key in headers[2:]
}
overall_avg_values = ["Overall Average", ""] + [
final_all_averages[key] for key in headers[2:]
]
csvwriter.writerow(overall_avg_values)
return final_all_averages, all_averages, unseen_averages
def _plot_layer_distribution(self, valid_best_layers):
"""Plot distribution of best layers"""
bins = np.arange(0, 33, 1)
plt.figure(figsize=(10, 6))
plt.hist(valid_best_layers, bins=bins, edgecolor='black')
plt.title('Best Layer Distribution', fontsize=16)
plt.xlabel('Layer', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.xticks(bins)
plt.grid(axis='y', linestyle='--', linewidth=0.7, alpha=0.7)
plt.xlim(0, 32)
plt.grid(True)
plt.savefig("plots/best_layer_distribution_valid.png")
plt.close()
def analyze_results(self, results_dir, recall=0.8, tweet=False):
"""Main analysis function that processes all results"""
all_results = defaultdict(self.nested_dict)
valid_best_layers = []
filtered_files = self._get_filtered_files(results_dir, recall)
used_states_list = []
# Process each dataset
for category, dataset_list in self.datasets.items():
for dataset_name in dataset_list:
if tweet:
dataset_name = f"{dataset_name}_tweet"
try:
file_name = next(
f for f in filtered_files if dataset_name in f)
except StopIteration:
print(f"No file found for dataset: {dataset_name}")
continue
with open(os.path.join(results_dir, file_name), "r") as f:
all_data = json.load(f)
all_pred_results = []
for data in all_data:
pred_results, used_states = self._process_data_entry(
data, all_results, category, dataset_name, results_dir)
all_pred_results.append(pred_results)
used_states_list += used_states
if 'valid_best_layer' in data:
valid_best_layers.append(data['valid_best_layer'])
with open(os.path.join(results_dir, file_name.replace(".json", "parsed.json")), "w") as f:
json.dump(all_pred_results, f, indent=4)
# Format and save results
headers, widths = self._format_results_table(all_results)
final_averages, all_averages, unseen_averages = self._save_results_csv(
headers, widths, all_results
)
# Plot distribution
# self._plot_layer_distribution(valid_best_layers)
return final_averages, all_averages, unseen_averages, all_results, used_states_list
def plot_recall_curve(self, results_dir, model="mamba"):
"""Plot accuracy vs recall curve"""
recalls = [0.2, 0.4, 0.6, 0.8, 1.0]
accs = []
for recall in recalls:
eval_results, _, _, _ = self.analyze_results(
results_dir, recall=recall)
accs.append(eval_results['test_intervene_acc'])
baseline = eval_results["test_zero_acc"]
fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(recalls, accs, 'r-', linewidth=2, label='Intervene Accuracy')
ax.axhline(baseline, linestyle='--', linewidth=2,
label='Zero-Shot Accuracy')
ax.set_xlabel('Recall', fontsize=12)
ax.set_ylabel('Accuracy', fontsize=12)
ax.set_title('Accuracy vs. Recall', fontsize=14)
ax.set_xlim(0.1, 1.1)
ax.legend(loc='lower right', fontsize=10)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.tick_params(direction='out', length=6, width=2)
ax.grid(color='gray', linestyle='--', linewidth=0.5)
plt.tight_layout()
plt.savefig(f"plots/{model}_recall_vs_acc.png",
dpi=300, bbox_inches='tight')
plt.close()
def analyze_multiple_dirs(self, result_dirs):
"""分析多个结果目录并汇总结果"""
category = ["nlu", "reasoning", "knowledge", "math", "safety"]
unseen = ["glue_cola", "bbq_religion", "deepmind",
"mmlu_high_school_psychology", "bbh_logical_deduction_five_objects"]
aggregate_results = self.nested_dict()
unseen_results = self.nested_dict()
# shots_results = defaultdict(list)
chosen_states_nums = self.nested_dict()
unseen_chosen_states_nums = self.nested_dict()
time_dict = self.nested_dict()
unseen_time_dict = self.nested_dict()
used_states = []
for results_dir in result_dirs:
eval_results, all_averages, unseen_averages, all_results, used_states_list = self.analyze_results(
results_dir)
used_states += used_states_list
# 处理chosen states numbers
self._process_chosen_states(
category, chosen_states_nums, all_averages)
self._process_unseen_chosen_states(
unseen, unseen_chosen_states_nums, all_results)
# process time
self._process_time_list(category, time_dict, all_averages)
self._process_unseen_time_list(
unseen, unseen_time_dict, all_results)
self._process_results(eval_results, aggregate_results,
category, all_averages, unseen_results, unseen_averages, all_results)
# 生成结果报告
count_states = Counter(used_states)
print(count_states)
df = pd.DataFrame.from_dict(count_states, orient='index', columns=['count'])
df.index = df.index.str.replace('_16shots', '')
df = df.sort_values('count', ascending=True)
plt.figure(figsize=(12, 8))
plt.barh(df.index, df['count'])
plt.xlabel('Usage Frequency', fontsize=16)
plt.ylabel('Type of Task Vector', fontsize=16)
plt.tick_params(axis='both', which='major', labelsize=12)
plt.title('Usage Frequency Distribution of different task vectors', fontsize=20, pad=20)
# 添加数值标签
for i, v in enumerate(df['count']):
plt.text(v, i, f' {v}', va='center')
plt.tight_layout()
plt.show()
plt.savefig("used_states_distribution.png")
self._generate_results_report(aggregate_results, unseen_results, chosen_states_nums,
unseen_chosen_states_nums, time_dict, unseen_time_dict)
def _process_time_list(self, category, time_dict, all_results):
for i, c in enumerate(category):
time_dict[c]["clean_time"].append(all_results["0shot_time"][i])
time_dict[c]["intervene_time"].append(
all_results["intervene_time"][i])
if "retrieve_time" in all_results.keys():
time_dict[c]["retrieve_time"].append(
all_results["retrieve_time"][i])
if len(all_results["bm25_time"])>0 and len(all_results[f"{nshots}shot_time"])>0:
time_dict[c]["bm25_infer_time"].append(all_results["bm25_time"][i])
time_dict[c][f"{nshots}shot_time"].append(all_results[f"{nshots}shot_time"][i])
def _process_unseen_time_list(self, unseen, unseen_time_dict, all_results):
for i, c in enumerate(unseen):
unseen_time_dict[c]["clean_time"] += all_results["unseen"][c]["0shot_time"]
unseen_time_dict[c]["intervene_time"] += all_results["unseen"][c]["intervene_time"]
unseen_time_dict[c]["retrieve_time"] += all_results["unseen"][c]["retrieve_time"]
if len(all_results["unseen"][c]["bm25_time"]) > 0:
unseen_time_dict[c]["bm25_infer_time"] += all_results["unseen"][c]["bm25_time"]
unseen_time_dict[c][f"{nshots}shot_time"] += all_results["unseen"][c][f"{nshots}shot_time"]
def _process_chosen_states(self, category, chosen_states_nums, all_averages):
"""处理chosen states的统计"""
for i, c in enumerate(category):
chosen_states_nums[c]["chosen_nums"].append(
all_averages["chosen_state_num"][i])
def _process_unseen_chosen_states(self, unseen, unseen_chosen_states_nums, all_results):
"""处理unseen数据集的chosen states统计"""
for i, c in enumerate(unseen):
unseen_chosen_states_nums[c]["chosen_nums"] += all_results['unseen'][c]["chosen_state_num"]
def _process_results(self, eval_results, aggregate_results, category,
all_averages, unseen_results, unseen_averages, all_results):
"""处理所有实验结果数据,包括普通项和tv项"""
# 处理长度数据
aggregate_results["Length"]["zs"].append(eval_results['zs_length'])
aggregate_results["Length"]["Ours"].append(eval_results['zs_length'])
aggregate_results["Length"]["bm25"].append(eval_results['bm25_length'])
aggregate_results["Length"]["bm25_tv"].append(eval_results['bm25_length'])
aggregate_results["Length"][f"{nshots}shot"].append(eval_results[f'{nshots}shot_length'])
aggregate_results["Length"][f"{nshots}shot_tv"].append(eval_results[f'{nshots}shot_length'])
# 处理每个类别的结果
for i, c in enumerate(category):
# 普通项
aggregate_results[c]["bm25"].append(all_averages["bm25_acc"][i])
aggregate_results[c]["zs"].append(all_averages['test_zero_acc'][i])
aggregate_results[c]["Ours"].append(all_averages['test_intervene_acc'][i])
# tv项
aggregate_results[c]["bm25_tv"].append(all_averages["bm25_tv"][i])
aggregate_results[c][f"{nshots}shot"].append(all_averages[f"{nshots}shot_acc"][i])
aggregate_results[c][f"{nshots}shot_tv"].append(all_averages[f"{nshots}shot_tv"][i])
# 处理unseen结果
for i, u in enumerate(self.datasets['unseen']):
# Length数据
unseen_results["zs"]["Length"].append(
sum(all_results['unseen'][u]["zs_length"]) /
len(all_results['unseen'][u]["zs_length"])
)
unseen_results["Ours"]["Length"].append(
sum(all_results['unseen'][u]["zs_length"]) /
len(all_results['unseen'][u]["zs_length"])
)
unseen_results["bm25"]["Length"].append(unseen_averages["bm25_length"][0])
unseen_results["bm25_tv"]["Length"].append(unseen_averages["bm25_length"][0])
unseen_results[f"{nshots}shot"]["Length"].append(unseen_averages[f"{nshots}shot_length"][0])
unseen_results[f"{nshots}shot_tv"]["Length"].append(unseen_averages[f"{nshots}shot_length"][0])
# 准确率数据
# 普通项
unseen_results["zs"][u].append(
sum(all_results['unseen'][u]["test_zero_acc"]) /
len(all_results['unseen'][u]["test_zero_acc"]) * 100
)
unseen_results["Ours"][u].append(
sum(all_results['unseen'][u]["test_intervene_acc"]) /
len(all_results['unseen'][u]["test_intervene_acc"]) * 100
)
unseen_results["bm25"][u].append(
sum(all_results['unseen'][u]["bm25_acc"]) /
len(all_results['unseen'][u]["bm25_acc"]) * 100
)
# tv项
unseen_results["bm25_tv"][u].append(
sum(all_results['unseen'][u]["bm25_tv"]) /
len(all_results['unseen'][u]["bm25_tv"]) * 100
)
unseen_results[f"{nshots}shot"][u].append(
sum(all_results['unseen'][u][f"{nshots}shot_acc"]) /
len(all_results['unseen'][u][f"{nshots}shot_acc"]) * 100
)
# tv项
unseen_results[f"{nshots}shot_tv"][u].append(
sum(all_results['unseen'][u][f"{nshots}shot_tv"]) /
len(all_results['unseen'][u][f"{nshots}shot_tv"]) * 100
)
# 处理平均值
# 普通项
aggregate_results["avg"]["bm25"].append(eval_results['bm25_acc'])
aggregate_results["avg"]['zs'].append(eval_results['test_zero_acc'])
aggregate_results["avg"]["Ours"].append(eval_results['test_intervene_acc'])
# tv项
aggregate_results["avg"]["bm25_tv"].append(eval_results['bm25_tv'])
aggregate_results["avg"][f"{nshots}shot"].append(eval_results[f'{nshots}shot_acc'])
aggregate_results["avg"][f"{nshots}shot_tv"].append(eval_results[f'{nshots}shot_tv'])
# unseen平均值
# 普通项
unseen_results['zs']['avg'].append(unseen_averages['test_zero_acc'][0])
unseen_results['Ours']['avg'].append(unseen_averages['test_intervene_acc'][0])
unseen_results['bm25']['avg'].append(unseen_averages['bm25_acc'][0])
# tv项
unseen_results['bm25_tv']['avg'].append(unseen_averages['bm25_tv'][0])
unseen_results[f'{nshots}shot']['avg'].append(unseen_averages[f'{nshots}shot_acc'][0])
# tv项
unseen_results[f'{nshots}shot_tv']['avg'].append(unseen_averages[f'{nshots}shot_tv'][0])
def _generate_results_report(self, aggregate_results, unseen_results,
chosen_states_nums, unseen_chosen_states_nums,
time_dict, unseen_time_dict):
"""生成结果报告"""
# 创建DataFrame并格式化
chosen_num_df = pd.DataFrame(chosen_states_nums)
unseen_chosen_num_df = pd.DataFrame(unseen_chosen_states_nums)
df = pd.DataFrame(aggregate_results)
unseen_df = pd.DataFrame(unseen_results).T
time_df = pd.DataFrame(time_dict).T
unseen_time_df = pd.DataFrame(unseen_time_dict).T
# 格式化函数
def format_cell(cell, digit_num=1):
if isinstance(cell, list):
mean = np.mean(cell)
std = np.std(cell)
return f"{mean:.{digit_num}f} ± {std:.{digit_num}f}"
return str(cell)
# 应用格式化
df_formatted = df.applymap(format_cell)
unseen_df_formatted = unseen_df.applymap(format_cell)
chosen_num_df_formatted = chosen_num_df.applymap(format_cell)
unseen_num_df_formatted = unseen_chosen_num_df.applymap(format_cell)
time_df_formatted = time_df.applymap(format_cell, digit_num=3)
unseen_time_df_formatted = unseen_time_df.applymap(
format_cell, digit_num=3)
# 打印结果
print(unseen_num_df_formatted)
print("\n")
print(chosen_num_df_formatted)
print("\n")
print(time_df_formatted)
print("\n")
print(unseen_time_df_formatted)
print("\n")
print(df_formatted)
print("Unseen \n")
print(unseen_df_formatted)
# 保存结果
df_formatted.to_csv("csvs/results.csv")
unseen_df_formatted.to_csv("csvs/unseen_results.csv")
unseen_num_df_formatted.to_csv("csvs/unseen_num.csv")
chosen_num_df_formatted.to_csv("csvs/chosen_num.csv")
time_df_formatted.to_csv("csvs/time.csv")
unseen_time_df_formatted.to_csv("csvs/unseen_time.csv")
# 生成性能分布图
# self._plot_performance_distribution(aggregate_results, model)
def _plot_performance_distribution(self, aggregate_results, model):
"""绘制性能分布图"""
category = ["math", "nlu", "reasoning", "knowledge", "safety"]
pre_performance_list = []
post_performance_list = []
for c in category:
pre_performance_list.append(sum(aggregate_results[c]['zs'])/3)
post_performance_list.append(sum(aggregate_results[c]['Ours'])/3)
self._create_performance_plot(
pre_performance_list, post_performance_list, model)
def _create_performance_plot(self, pre_performance_list, post_performance_list, model):
"""创建性能对比图"""
category = ['Math', 'NLU', 'Reasoning', 'Knowledge', 'Safety']
bar_width = 0.4
r1 = np.arange(len(category))
r2 = [x + bar_width for x in r1]
fig, ax = plt.subplots(figsize=(23, 23))
ax.bar(r1, pre_performance_list, color='skyblue',
width=bar_width, label='Zero-shot')
ax.bar(r2, post_performance_list, color='slateblue',
width=bar_width, label='ELICIT')
self._format_performance_plot(ax, category, bar_width,
pre_performance_list, post_performance_list)
plt.savefig(f"plots/performance_distribution_{model}.png")
plt.close()
def _format_performance_plot(self, ax, category, bar_width,
pre_performance_list, post_performance_list):
"""格式化性能图表"""
ax.set_ylabel('Accuracy', fontweight='bold', fontsize=52)
plt.xticks(fontsize=52)
plt.yticks(fontsize=52)
ax.set_xticks([r + bar_width/2 for r in range(len(category))])
ax.set_xticklabels([c.capitalize() for c in category])
ax.legend(fontsize=52)
self._add_value_labels(ax)
self._highlight_math_difference(ax, bar_width,
pre_performance_list[0], post_performance_list[0])
plt.tight_layout()
@staticmethod
def _add_value_labels(ax, spacing=5):
"""为柱状图添加数值标签"""
for rect in ax.patches:
y_value = rect.get_height()
x_value = rect.get_x() + rect.get_width() / 2
space = spacing if y_value >= 0 else -spacing
va = 'bottom' if y_value >= 0 else 'top'
ax.annotate(
f"{y_value:.1f}",
(x_value, y_value),
xytext=(0, space),
textcoords="offset points",
ha='center',
va=va,
fontsize=45
)
@staticmethod
def _highlight_math_difference(ax, bar_width, math_pre, math_post):
"""突出显示数学类别的差异"""
math_diff = math_post - math_pre
rect = plt.Rectangle(
(bar_width/2, math_pre),
bar_width,
math_diff,
fill=False,
edgecolor='red',
linestyle='--',
linewidth=10
)
ax.add_patch(rect)
def main():
"""主函数"""
# # weight fv
# model = sys.argv[2]
# suffix = sys.argv[3]
analyzer = ResultAnalyzer()
model = "mistral"
result_dirs = [
# f"results/sep28_natural_1layer_local_mistral_math_seed100",
# f"results/sep28_natural_1layer_local_mistral_math_seed10",
# f"results/sep28_natural_1layer_local_mistral_math_seed42"
# "rebuttal_results/nov13_natural_1layer_local_pythia6.9b_seed42",
# "rebuttal_results/nov13_natural_1layer_local_pythia6.9b_seed100",
# "rebuttal_results/nov13_natural_1layer_local_pythia6.9b_seed10"
# "rebuttal_results/nov18_math_force_seed100",
# "rebuttal_results/nov18_math_force_seed10",
# "rebuttal_results/nov18_math_force_seed42",
# "rebuttal_results/nov15_diversity_llama3_seed42",
# "rebuttal_results/nov15_diversity_llama3_seed10",
# "rebuttal_results/nov15_diversity_llama3_seed100",
# "rebuttal_results/nov17_natural_1layer_local_pythia12b_seed10",
# "rebuttal_results/nov17_natural_1layer_local_pythia12b_seed100",
# "rebuttal_results/nov17_natural_1layer_local_pythia12b_seed42",
# "results/sep24_natural_1layer_local_seed10",
# "results/sep24_natural_1layer_local_seed100",
# "results/sep24_natural_1layer_local_seed42"
# "results/sep26_natural_1layer_local_seed10",
# "results/sep26_natural_1layer_local_seed100",
# "results/sep26_natural_1layer_local_seed42"
# "rebuttal_results/nov_18_pythia-6.9b_group_k1_seed42",
# "rebuttal_results/nov_18_pythia-6.9b_group_k2_seed10",
# "rebuttal_results/nov_18_pythia-6.9b_group_k2_seed100"
# "rebuttal_results/nov17_diversity_llama3_seed10",
# "rebuttal_results/nov17_diversity_llama3_seed100",
# "rebuttal_results/nov17_diversity_llama3_seed42"
# "rebuttal_results/nov_17_llama3_70b_seed42",
# "rebuttal_results/nov_17_llama3_70b_seed10",
# "rebuttal_results/nov_17_llama3_70b_seed100"
# "rebuttal_results/nov_18_pythia-6.9b_group_k2_seed10",
# "rebuttal_results/nov_18_pythia-6.9b_group_k2_seed42",
# "rebuttal_results/nov_18_pythia-6.9b_group_k2_seed100"
# "rebuttal_results/nov18_llama_natural_all_layer"
# "rebuttal_results/nov19_instruct_seed42"
# "rebuttal_results/nov18_llama_seed42"
# "rebuttal_results/nov19_instruct_generation_seed42"
# "rebuttal_results/nov21_natural_1layer_local_pythia6.9b_seed42",
# "iclr_results/feb5_natural_1layer_local_llama3_seed10",
# "iclr_results/feb5_natural_1layer_local_llama3_seed100",
# "iclr_results/feb11_natural_1layer_local_mamba_qa_seed10",
# "iclr_results/feb11_natural_1layer_local_mamba_qa_seed100",
f"iclr_feb_results/feb13_natural_1layer_local_{model}_seed42",
f"iclr_feb_results/feb13_natural_1layer_local_{model}_seed10",
f"iclr_feb_results/feb13_natural_1layer_local_{model}_seed100",
# "iclr_results/feb13_natural_1layer_local_pythia2.8b_qa_seed10",
# "iclr_results/feb13_natural_1layer_local_mistral_qa_seed100"
# "iclr_test_results/feb11_natural_1layer_local_llama3_seed42"
]
analyzer.analyze_multiple_dirs(result_dirs)
if __name__ == "__main__":
main()