Skip to content

Commit 2d9ef0b

Browse files
committed
init.
1 parent 91eaf0f commit 2d9ef0b

18 files changed

+7192
-2
lines changed

README.md

+62-2
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,62 @@
1-
# ELICIT: LLM Augmentation via External In-context Capability
2-
Will be released soon!
1+
<h2 align="center"> <a href="https://arxiv.org/pdf/2410.09343">ELICIT: LLM Augmentation via External In-Context Capability</a></h2>
2+
<h5 align="center"> If our project helps you, please give us a star ⭐ and cite our <a href="#citation">paper</a>!</h2>
3+
<h5 align="center">
4+
5+
## ELICIT
6+
![overview](./assets/overview.png)
7+
We propose ELICIT, improving language model performance by:
8+
1. **Building a Capability Library**: A collection of task-specific capabilities from in-domain datasets.
9+
2. **Dynamic Capability Elicitation**: Using a trained retriever to dynamically select relevant capabilities for aribitary query.
10+
11+
12+
## Experiment Codes
13+
You can find our results at [here](https://drive.google.com/drive/folders/1cWvWc4uSSvEnhzs03EtqJGptBGUitpcf?usp=drive_link).
14+
### Building the Capability Library
15+
16+
The Capability Library is constructed using validation sets from in-domain tasks with 16-shot examples. Follow these steps:
17+
18+
1. Prepare datasets:
19+
```bash
20+
python process_data.py --task <task_name>
21+
```
22+
Example:
23+
```bash
24+
python process_data.py --task arc_challenge
25+
```
26+
27+
2. Collect libraries for different models:
28+
```bash
29+
./scripts/collect_tv.sh
30+
```
31+
32+
## Dynamic Capability Elicitation
33+
34+
### Train the Retriever
35+
We provide a balanced dataset of 10,000 samples to train the retriever:
36+
```bash
37+
python train_retriever.py --output_model prompt_classifier_model.pth
38+
```
39+
40+
### Evaluate ELICIT
41+
Once the retriever is trained, you can evaluate ELICIT using the collected library:
42+
```bash
43+
./scripts/eval_elicit.sh
44+
```
45+
To analyze results:
46+
1. Update the evaluation directory in `analysis_results.py`.
47+
2. Run the script:
48+
```bash
49+
python analysis_results.py
50+
```
51+
52+
## Citation
53+
If you find this project helpful, please consider citing our work:
54+
55+
```bibtex
56+
@article{wang2024elicit,
57+
title={ELICIT: LLM Augmentation via External In-Context Capability},
58+
author={Wang, Futing and Yan, Jianhao and Zhang, Yue and Lin, Tao},
59+
journal={arXiv preprint arXiv:2410.09343},
60+
year={2024}
61+
}
62+
```

0 commit comments

Comments
 (0)