forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasked_lm.py
227 lines (203 loc) · 8.76 KB
/
masked_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import itertools
import os
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.data import (
ConcatDataset,
data_utils,
Dictionary,
encoders,
IdDataset,
indexed_dataset,
MaskTokensDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PadDataset,
PrependTokenDataset,
SortDataset,
TokenBlockDataset,
)
from fairseq.tasks import FairseqTask, register_task
@register_task('masked_lm')
class MaskedLMTask(FairseqTask):
"""Task for training masked language models (e.g., BERT, RoBERTa)."""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument('data', help='colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner')
parser.add_argument('--sample-break-mode', default='complete',
choices=['none', 'complete', 'complete_doc', 'eos'],
help='If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
'of sentence, but may include multiple sentences per sample. '
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.')
parser.add_argument('--tokens-per-sample', default=512, type=int,
help='max number of total tokens over all segments '
'per sample for BERT dataset')
parser.add_argument('--mask-prob', default=0.15, type=float,
help='probability of replacing a token with mask')
parser.add_argument('--leave-unmasked-prob', default=0.1, type=float,
help='probability that a masked token is unmasked')
parser.add_argument('--random-token-prob', default=0.1, type=float,
help='probability of replacing a token with a random token')
parser.add_argument('--freq-weighted-replacement', action='store_true',
help='sample random replacement words based on word frequencies')
parser.add_argument('--mask-whole-words', default=False, action='store_true',
help='mask whole words; you may also want to set --bpe')
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = dictionary.add_symbol('<mask>')
@classmethod
def setup_task(cls, args, **kwargs):
paths = args.data.split(':')
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], 'dict.txt'))
print('| dictionary: {} types'.format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, epoch=0, combine=False):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = self.args.data.split(':')
assert len(paths) > 0
data_path = paths[epoch % len(paths)]
split_path = os.path.join(data_path, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path))
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode=self.args.sample_break_mode,
)
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
# create masked input and targets
if self.args.mask_whole_words:
bpe = encoders.build_bpe(self.args)
if bpe is not None:
def is_beginning_of_word(i):
if i < self.source_dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = self.source_dictionary[i]
if tok.startswith('madeupword'):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(list(
map(is_beginning_of_word, range(len(self.source_dictionary)))
))
else:
mask_whole_words = None
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
dataset,
self.source_dictionary,
pad_idx=self.source_dictionary.pad(),
mask_idx=self.mask_idx,
seed=self.args.seed,
mask_prob=self.args.mask_prob,
leave_unmasked_prob=self.args.leave_unmasked_prob,
random_token_prob=self.args.random_token_prob,
freq_weighted_replacement=self.args.freq_weighted_replacement,
mask_whole_words=mask_whole_words,
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(src_dataset))
self.datasets[split] = SortDataset(
NestedDictionaryDataset(
{
'id': IdDataset(),
'net_input': {
'src_tokens': PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'src_lengths': NumelDataset(src_dataset, reduce=False),
},
'target': PadDataset(
tgt_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'nsentences': NumSamplesDataset(),
'ntokens': NumelDataset(src_dataset, reduce=True),
},
sizes=[src_dataset.sizes],
),
sort_order=[
shuffle,
src_dataset.sizes,
],
)
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
if self.args.also_lowercase_words:
raise NotImplementedError
src_dataset = PadDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode='eos',
),
pad_idx=self.source_dictionary.pad(),
left_pad=False,
)
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos())
src_dataset = NestedDictionaryDataset(
{
'id': IdDataset(),
'net_input': {
'src_tokens': src_dataset,
'src_lengths': NumelDataset(src_dataset, reduce=False),
},
},
sizes=src_lengths,
)
if sort:
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
return src_dataset
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def get_average_masked_score(self, model, src_tokens, mask, **net_input):
"""Mask a set of tokens and return their average score."""
masked_tokens = src_tokens.clone()
masked_tokens[mask.byte()] = self.mask_idx
net_output = model(src_tokens=masked_tokens, **net_input, last_state_only=True)
lprobs = F.log_softmax(net_output[0], dim=-1, dtype=torch.float32)
lprobs = lprobs.gather(-1, src_tokens.unsqueeze(-1)).squeeze(-1)
mask = mask.type_as(lprobs)
score = (lprobs * mask).sum(dim=-1) / mask.sum(dim=-1)
return score