forked from ErasmusMC-Bioinformatics/shm_csr
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpattern_plots.r
178 lines (99 loc) · 6.12 KB
/
pattern_plots.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
library(ggplot2)
library(reshape2)
library(scales)
args <- commandArgs(trailingOnly = TRUE)
input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt"
plot1.path = args[2]
plot1.png = paste(plot1.path, ".png", sep="")
plot1.txt = paste(plot1.path, ".txt", sep="")
plot1.pdf = paste(plot1.path, ".pdf", sep="")
plot2.path = args[3]
plot2.png = paste(plot2.path, ".png", sep="")
plot2.txt = paste(plot2.path, ".txt", sep="")
plot2.pdf = paste(plot2.path, ".pdf", sep="")
plot3.path = args[4]
plot3.png = paste(plot3.path, ".png", sep="")
plot3.txt = paste(plot3.path, ".txt", sep="")
plot3.pdf = paste(plot3.path, ".pdf", sep="")
clean.output = args[5]
dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1)
classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE")
xyz = c("x", "y", "z")
new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
names(dat) = new.names
clean.dat = dat
clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))]
write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA)
dat["RGYW.WRCY",] = colSums(dat[c(14,15),], na.rm=T)
dat["TW.WA",] = colSums(dat[c(16,17),], na.rm=T)
data1 = dat[c("RGYW.WRCY", "TW.WA"),]
data1 = data1[,names(data1)[grepl(".z", names(data1))]]
names(data1) = gsub("\\..*", "", names(data1))
data1 = melt(t(data1))
names(data1) = c("Class", "Type", "value")
chk = is.na(data1$value)
if(any(chk)){
data1[chk, "value"] = 0
}
data1 = data1[order(data1$Type),]
write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) + ggtitle("Percentage of mutations in AID and pol eta motives")
p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4"))
#p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4"))
png(filename=plot1.png, width=510, height=300)
print(p)
dev.off()
ggsave(plot1.pdf, p)
data2 = dat[c(1, 5:8),]
data2 = data2[,names(data2)[grepl("\\.x", names(data2))]]
names(data2) = gsub(".x", "", names(data2))
data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]]
data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1)
data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]]
data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1)
data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0
data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0
data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0
data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0
data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),]))
names(data2) = c("Class", "Type", "value")
chk = is.na(data2$value)
if(any(chk)){
data2[chk, "value"] = 0
}
data2 = data2[order(data2$Type),]
write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") + ggtitle("Relative mutation patterns")
p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
png(filename=plot2.png, width=480, height=300)
print(p)
dev.off()
ggsave(plot2.pdf, p)
data3 = dat[c(5, 6, 8, 18:21),]
data3 = data3[,names(data3)[grepl("\\.x", names(data3))]]
names(data3) = gsub(".x", "", names(data3))
data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1)
data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1)
data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1)
data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0
data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0
data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0
data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0
data3["A/T",is.nan(unlist(data3["A/T",]))] = 0
data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0
data3 = melt(t(data3[8:10,]))
names(data3) = c("Class", "Type", "value")
chk = is.na(data3$value)
if(any(chk)){
data3[chk, "value"] = 0
}
data3 = data3[order(data3$Type),]
write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) + ggtitle("Absolute mutation patterns")
p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
png(filename=plot3.png, width=480, height=300)
print(p)
dev.off()
ggsave(plot3.pdf, p)