-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
94 lines (74 loc) · 3.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from settings import run_folder, run_archive_folder
class Residual_CNN(nn.Module):
def __init__(self, reg_const, input_dim, output_dim, hidden_layers):
super(Residual_CNN, self).__init__()
# filter(out_channel), kernel_size는 config의 hidden layer 그대로 복사
# filter = 75 , kernel = (4,4)
# padding = same -> 1 -> this was solved since Pytorch 1.10.0 “same” keyword is accepted as input for padding for conv2d
# x = add([input_block, x]) ( https://tensorflow.google.cn/api_docs/python/tf/keras/layers/add ) -> torch.add https://pytorch.org/docs/stable/generated/torch.add.html
# l2 regularizer는 loss파트에서 weight decay를 조정 https://discuss.pytorch.org/t/how-to-implement-pytorch-equivalent-of-keras-kernel-weight-regulariser/99773
self.reg_const=reg_const
self.input_dim=input_dim
self.output_dim=output_dim
self.hidden_layer=hidden_layers
# input_dim은 (2,6,7)이므로, 첫 입력에 첫 채널이 들어간다고 생각.
self.hidden_layer = nn.Sequential(
nn.Conv2d(self.input_dim[0], 75, kernel_size=4, padding="same"),
nn.BatchNorm2d(75),
nn.LeakyReLU()
)
self.conv_and_residual_layer = nn.Sequential(
# conv_layer
nn.Conv2d(75, 75, kernel_size=4, padding="same"),
nn.BatchNorm2d(75),
nn.LeakyReLU(),
# residual_layer
nn.Conv2d(75, 75, kernel_size=4, padding="same"),
nn.BatchNorm2d(75)
)
self.value_head1 = nn.Sequential(
nn.Conv2d(75, 1, kernel_size=1, padding="same"),
nn.BatchNorm2d(1),
nn.LeakyReLU()
)
self.value_head2 = nn.Sequential(
nn.Linear(42, 20),
nn.LeakyReLU(),
nn.Linear(20, 1),
nn.Tanh()
)
self.policy_head1 = nn.Sequential(
nn.Conv2d(75, 1, kernel_size=1, padding="same"),
nn.BatchNorm2d(1),
nn.LeakyReLU()
)
self.policy_head2 = nn.Sequential(
nn.Linear(42, self.output_dim)
)
def forward(self, x):
x = self.hidden_layer(x)
input_block = x
for i in range(5):
x = self.conv_and_residual_layer(x)
x = torch.add(input_block,x)
x = F.leaky_relu(x)
vh = self.value_head1(x)
vh = vh.view(vh.size(0), -1)
vh = self.value_head2(vh)
ph = self.policy_head1(x)
ph = ph.view(ph.size(0), -1)
ph = self.policy_head2(ph)
return {'value_head':vh,'policy_head':ph}
def convertToModelInput(self, state):
inputToModel = state.binary
inputToModel = np.reshape(inputToModel, self.input_dim)
return (inputToModel)
def write(self,version):
torch.save(self.state_dict(), (run_folder + 'models/version' + "{0:0>4}".format(version) + '.pt'))
def read(self,game,run_number,version):
return torch.load( 'run/'+"/models/version" + "{0:0>4}".format(version) + '.pt')