diff --git a/CHANGELOG.md b/CHANGELOG.md index b618887..12fb2a0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,12 @@ -1.0.5 +1.0.6.1 + +## 1.0.6 +## 2020-07 +- Update TF backend +- Add support to tensorflow 2.0 (both legacy and eager mode) +- Refactor torch backend models +- Add `--caching_dataset` to cache transformed data into memory (ignored when `memory_limit` set). +- Fix FastMetrics multi-threads issue ## 1.0.5 ## 2020-05 diff --git a/Docs/HowTo/Change backend.md b/Docs/HowTo/Change backend.md index b9510d9..15bdaa8 100644 --- a/Docs/HowTo/Change backend.md +++ b/Docs/HowTo/Change backend.md @@ -5,7 +5,8 @@ for some of models. Edit config file `~/.vsr/config.yml`, If you'd like to change to tensorflow: (create one if not exist) ```yaml -# the backend could be 'tensorflow', 'tensorflow2', 'pytorch' +# the backend could be 'tensorflow', 'keras', 'pytorch' +# the `keras` represents tensorflow v2.0 backend: tensorflow # the verbose could be 'error', 'warning', 'info', 'debug' verbose: info diff --git a/Tests/motion_test.py b/Tests/motion_test.py index e7f03a3..5513183 100644 --- a/Tests/motion_test.py +++ b/Tests/motion_test.py @@ -7,7 +7,7 @@ if not os.getcwd().endswith('Tests'): os.chdir('Tests') from VSR.Backend.TF.Framework import Motion as M -from VSR.Backend.Torch.Models.video import motion as MT +from VSR.Backend.Torch.Models.Ops import Motion as MT from VSR.DataLoader.FloDecoder import open_flo, KITTI import tensorflow as tf diff --git a/Tests/space_to_depth_test.py b/Tests/space_to_depth_test.py index a8a558e..7d9ab3e 100644 --- a/Tests/space_to_depth_test.py +++ b/Tests/space_to_depth_test.py @@ -13,7 +13,7 @@ import torch import torchvision from torch.nn import PixelShuffle - from VSR.Backend.Torch.Models.Arch import SpaceToDim + from VSR.Backend.Torch.Models.Ops.Scale import SpaceToDim except ImportError: exit(0) diff --git a/Tests/training_test.py b/Tests/training_test.py index da6d651..d683ff4 100644 --- a/Tests/training_test.py +++ b/Tests/training_test.py @@ -11,7 +11,8 @@ os.chdir('Tests') _WORKDIR = r"/tmp/vsr/utest/" -_TCMD = r"python train.py {} --data_config=../Tests/data/fake_datasets.yml --dataset=normal --epochs=1 --steps=1 --save_dir={}" +_TCMD = ("python train.py {} --data_config=../Tests/data/fake_datasets.yml" + "--dataset=normal --epochs=1 --steps=1 --save_dir={} --val_steps=1") _ECMD = r"python eval.py {} --save_dir={} --ensemble -t=../Tests/data/set5_x2" @@ -43,6 +44,7 @@ def test_other_models(): 'sofvsr', 'vespcn', 'frvsr', 'qprn', 'ufvsr', 'yovsr', 'tecogan', 'spmc', 'rbpn' ): + # skip video model continue train(k) eval(k) diff --git a/Tools/FastMetrics.py b/Tools/FastMetrics.py index 8a94beb..7d48599 100644 --- a/Tools/FastMetrics.py +++ b/Tools/FastMetrics.py @@ -4,13 +4,13 @@ # Update Date: 6/6/19, 10:35 AM import argparse -import multiprocessing as mp +from multiprocessing.pool import ThreadPool from pathlib import Path import numpy as np import tqdm from PIL import Image -from skimage.measure import compare_ssim +from skimage.metrics import structural_similarity from VSR.Util.ImageProcess import rgb_to_yuv @@ -24,22 +24,36 @@ FLAGS = parser.parse_args() +def split_path_filter(x: Path): + try: + x = x.resolve() + # path, glob pattern, recursive + return x, '*', False + except OSError: + print(str(x.as_posix())) + pattern = x.name + rec = False + x = x.parent + if '*' in x.name: + x = x.parent + rec = True + print(x, pattern, rec) + return x, pattern, rec + + def gen(): d1 = Path(FLAGS.input_dir) d2 = Path(FLAGS.reference_dir) + d1, d1_filter, d1_rec = split_path_filter(d1) + d2, d2_filter, d2_rec = split_path_filter(d2) assert d1.exists() and d2.exists(), "Path not found!" - assert len(list(d1.iterdir())) == len(list(d2.iterdir())), f"{d1} v {d2}" - - for x, y in zip(sorted(d1.iterdir()), sorted(d2.iterdir())): - if x.is_dir() and y.is_dir(): - assert len(list(x.iterdir())) == len(list(y.iterdir())), f"{x} v {y}" - for i, j in zip(sorted(x.iterdir()), sorted(y.iterdir())): - if i.is_file() and j.is_file(): - yield i, j - else: - print(f" [!] Found {i} v.s. {j} not file.") - elif x.is_file() and y.is_file(): + d1 = sorted(d1.rglob(d1_filter)) if d1_rec else sorted(d1.glob(d1_filter)) + d2 = sorted(d2.rglob(d2_filter)) if d2_rec else sorted(d2.glob(d2_filter)) + assert len(d1) == len(d2), f"{len(d1)} v {len(d2)}" + + for x, y in zip(d1, d2): + if x.is_file() and y.is_file(): yield x, y else: print(f" [!] Found {x} v.s. {y} mismatch.") @@ -54,9 +68,14 @@ def main(): def action(x, y): xname = f'{x.parent.name}/{x.stem}' yname = f'{y.parent.name}/{y.stem}' - x = Image.open(x) - y = Image.open(y) - assert x.width == y.width and x.height == y.height, "Image size mismatch!" + x = Image.open(x).convert('RGB') + y = Image.open(y).convert('RGB') + if x.width != y.width or x.height != y.height: + # print(f"Image size mismatch {x.width}x{x.height} != {y.width}x{y.height}") + min_w = min(x.width, y.width) + min_h = min(x.height, y.height) + x = x.crop([0, 0, min_w, min_h]) + y = y.crop([0, 0, min_w, min_h]) xx = np.asarray(x, dtype=np.float) / 255.0 yy = np.asarray(y, dtype=np.float) / 255.0 if FLAGS.l_only: @@ -69,14 +88,14 @@ def action(x, y): psnr = np.log10(1.0 / mse) * 10.0 info = {"x": xname, "y": yname} if FLAGS.ssim: - ssim = compare_ssim(xx, yy, multichannel=True) + ssim = structural_similarity(xx, yy, multichannel=True) info.update(SSIM=ssim) info.update(PSNR=psnr) info.update(MSE=mse) return info if FLAGS.multithread: - pool = mp.pool.ThreadPool() + pool = ThreadPool() results = [pool.apply_async(action, (i, j)) for i, j in gen()] with tqdm.tqdm(results) as r: for info in r: diff --git a/Train/check_dataset.py b/Train/check_dataset.py index e27714d..db67700 100644 --- a/Train/check_dataset.py +++ b/Train/check_dataset.py @@ -4,6 +4,7 @@ # Update: 2020 - 4 - 17 import argparse +from pathlib import Path from VSR.DataLoader import load_datasets @@ -48,11 +49,12 @@ def _check(name: str): if __name__ == '__main__': + CWD = Path(__file__).resolve().parent.parent parser = argparse.ArgumentParser( description="Check the dataset and print out its content") parser.add_argument("dataset", type=str, help="The name of the dataset, case insensitive.") - parser.add_argument("--description-file", default="../Data/datasets.yaml", + parser.add_argument("--description-file", default=f"{CWD}/Data/datasets.yaml", help="DDF file") flags = parser.parse_args() main(flags.dataset, flags.description_file) diff --git a/Train/eval.py b/Train/eval.py index df65aab..07955cb 100644 --- a/Train/eval.py +++ b/Train/eval.py @@ -13,13 +13,14 @@ Config, compat_param, save_inference_images, suppress_opt_by_args ) +CWD = Path(__file__).resolve().parent.parent parser = argparse.ArgumentParser(description=f'VSR ({BACKEND}) Testing Tool v1.0') g0 = parser.add_argument_group("basic options") g0.add_argument("model", choices=list_supported_models(), help="specify the model name") g0.add_argument("-p", "--parameter", help="specify the model parameter file (*.yaml)") g0.add_argument("-t", "--test", nargs='*', help="specify test dataset name or data path") -g0.add_argument("--save_dir", default='../Results', help="working directory") -g0.add_argument("--data_config", default="../Data/datasets.yaml", help="specify dataset config file") +g0.add_argument("--save_dir", default=f'{CWD}/Results', help="working directory") +g0.add_argument("--data_config", default=f"{CWD}/Data/datasets.yaml", help="specify dataset config file") g1 = parser.add_argument_group("evaluating options") g1.add_argument("--pretrain", help="specify the pre-trained model checkpoint or will search into `save_dir` if not specified") g1.add_argument("--ensemble", action="store_true") @@ -66,9 +67,10 @@ def main(): if opt.parameter: model_config_file = Path(opt.parameter) else: - model_config_file = Path(f'par/{BACKEND}/{opt.model}.{_ext}') + model_config_file = Path(f'{CWD}/Train/par/{BACKEND}/{opt.model}.{_ext}') if model_config_file.exists(): opt.update(compat_param(Config(str(model_config_file)))) + break # get model parameters from pre-defined YAML file model_params = opt.get(opt.model, {}) suppress_opt_by_args(model_params, *args) diff --git a/Train/par/keras/srcnn.yaml b/Train/par/keras/srcnn.yaml new file mode 100644 index 0000000..929d39f --- /dev/null +++ b/Train/par/keras/srcnn.yaml @@ -0,0 +1,18 @@ +# srcnn 9-5-5 +--- +srcnn: + layers: 3 + filters: + - 9 + - 1 + - 5 + scale: 4 + channel: 1 + +batch: 4 +patch_size: 16 +lr: 1.0e-4 +lr_decay: + method: multistep + decay_step: [10000, 15000] + decay_rate: 0.1 diff --git a/Train/par/pytorch/carn.yml b/Train/par/pytorch/carn.yml index 4bd6c31..bf4794f 100644 --- a/Train/par/pytorch/carn.yml +++ b/Train/par/pytorch/carn.yml @@ -3,6 +3,7 @@ carn: channel: 3 multi_scale: 1 # change to 1 if use official pth file group: 1 + clip: 10 batch_shape: [16, 3, 64, 64] lr: 1.0e-4 diff --git a/Train/par/pytorch/cubic.yml b/Train/par/pytorch/cubic.yml new file mode 100644 index 0000000..ef3a07d --- /dev/null +++ b/Train/par/pytorch/cubic.yml @@ -0,0 +1,6 @@ +cubic: + scale: 4 + channel: 3 + depth: 1 + +batch_shape: [16, 3, 32, 32] diff --git a/Train/par/pytorch/dbpn.yml b/Train/par/pytorch/dbpn.yml index ee29eb5..f786457 100644 --- a/Train/par/pytorch/dbpn.yml +++ b/Train/par/pytorch/dbpn.yml @@ -1,7 +1,6 @@ dbpn: scale: 4 - mode: 'dbpn' - num_channels: 3 + channel: 3 base_filter: 64 feat: 256 num_stages: 7 diff --git a/Train/par/pytorch/edsr.yml b/Train/par/pytorch/edsr.yml index 5d771b0..a52a5c6 100644 --- a/Train/par/pytorch/edsr.yml +++ b/Train/par/pytorch/edsr.yml @@ -1,10 +1,8 @@ edsr: scale: 4 + channel: 3 n_resblocks: 16 n_feats: 64 - rgb_range: 255 - res_scale: 1 - n_colors: 3 batch_shape: [8, 3, 48, 48] lr: 1.0e-4 diff --git a/Train/par/pytorch/esrgan.yml b/Train/par/pytorch/esrgan.yml index 51226ba..d8af6ab 100644 --- a/Train/par/pytorch/esrgan.yml +++ b/Train/par/pytorch/esrgan.yml @@ -1,14 +1,9 @@ esrgan: scale: 4 - in_nc: 3 - out_nc: 3 + channel: 3 nf: 64 nb: 23 gc: 32 - act_type: 'leakyrelu' - mode: 'CNA' - res_scale: 1 - upsample_mode: 'upconv' weights: [0.01, 1, 5.0e-3] patch_size: 128 diff --git a/Train/par/pytorch/msrn.yml b/Train/par/pytorch/msrn.yml index 4de2fe3..275606d 100644 --- a/Train/par/pytorch/msrn.yml +++ b/Train/par/pytorch/msrn.yml @@ -1,7 +1,7 @@ msrn: scale: 4 + channel: 3 rgb_range: 255 - n_colors: 3 batch_shape: [16, 3, 32, 32] lr: 1.0e-4 diff --git a/Train/par/pytorch/rcan.yml b/Train/par/pytorch/rcan.yml index fb27593..06e6434 100644 --- a/Train/par/pytorch/rcan.yml +++ b/Train/par/pytorch/rcan.yml @@ -1,12 +1,11 @@ rcan: scale: 4 + channel: 3 n_resgroups: 10 n_resblocks: 20 n_feats: 64 reduction: 16 rgb_range: 255 - n_colors: 3 - res_scale: 1.0 batch_shape: [16, 3, 32, 32] lr: 1.0e-4 diff --git a/Train/par/pytorch/realsr.yml b/Train/par/pytorch/realsr.yml new file mode 100644 index 0000000..0be0476 --- /dev/null +++ b/Train/par/pytorch/realsr.yml @@ -0,0 +1,10 @@ +realsr: + scale: 4 + channel: 3 + nf: 64 + nb: 23 + pixel_weight: !!float 1 + feature_weight: !!float 0 + gan_weight: !!float 0 + +batch_shape: [16, 3, 64, 64] diff --git a/Train/par/pytorch/srmd.yml b/Train/par/pytorch/srmd.yml index ad4aa73..239ffac 100644 --- a/Train/par/pytorch/srmd.yml +++ b/Train/par/pytorch/srmd.yml @@ -2,12 +2,14 @@ srmd: scale: 4 channel: 3 + layers: 12 + filters: 128 degradation: - kernel_type: 'isotropic' # isotropic or anisotropic - l1: 2.0 # scaling of eigen values on base 0. [0.1, 10] - l2: 2.0 # scaling of eigen values on base 1. [0.1, l1] + kernel_type: 'anisotropic' # isotropic or anisotropic + l1: 0.1 # scaling of eigen values on base 0. [0.1, 10] + l2: 0.1 # scaling of eigen values on base 1. [0.1, l1] theta: 0.0 # rotation angle (rad) of the kernel. [0, pi] - noise: 5.0 # noise stddev (0, 75] + noise: 5 # noise stddev (0, 75] batch_shape: [16, 3, 64, 64] lr: 1.0e-4 diff --git a/Train/par/tensorflow/carn.yaml b/Train/par/tensorflow/carn.yaml index ee16909..6c4c119 100644 --- a/Train/par/tensorflow/carn.yaml +++ b/Train/par/tensorflow/carn.yaml @@ -1,16 +1,16 @@ carn: - recursive: false - n_residual: 3 - n_blocks: 3 - filters: 64 - clip: 10 - weight_decay: 0 - scale: 4 - channel: 3 + recursive: false + n_residual: 3 + n_blocks: 3 + filters: 64 + clip: 10 + weight_decay: 0 + scale: 4 + channel: 3 batch_shape: [4, 16, 16, 3] lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [150000] - decay_rate: 0.1 + method: multistep + decay_step: [150000] + decay_rate: 0.1 diff --git a/Train/par/tensorflow/dbpn.yaml b/Train/par/tensorflow/dbpn.yaml index 09b4cd1..105dfd9 100644 --- a/Train/par/tensorflow/dbpn.yaml +++ b/Train/par/tensorflow/dbpn.yaml @@ -1,13 +1,13 @@ dbpn: - bp_layers: 7 - use_dense: true - scale: 4 - channel: 3 + bp_layers: 7 + use_dense: true + scale: 4 + channel: 3 patch_size: 96 batch: 16 -lr: 1.0e-6 +lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [60000, 160000] - decay_rate: 1 + method: multistep + decay_step: [60000, 160000] + decay_rate: 1 diff --git a/Train/par/tensorflow/dcscn.yaml b/Train/par/tensorflow/dcscn.yaml index d25f617..ad78562 100644 --- a/Train/par/tensorflow/dcscn.yaml +++ b/Train/par/tensorflow/dcscn.yaml @@ -1,11 +1,15 @@ dcscn: - layers: 8 - reconstruction_layers: 1 - filters: 196 - min_filters: 48 - nin_filter: [64, 32] - reconst_filter: 32 - filters_decay_gamma: 1.5 - drop_out: 0.8 - scale: 4 - channel: 3 + layers: 8 + reconstruction_layers: 1 + filters: 196 + min_filters: 48 + nin_filter: [64, 32] + reconst_filter: 32 + filters_decay_gamma: 1.5 + drop_out: 0.8 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/dncnn.yaml b/Train/par/tensorflow/dncnn.yaml index 938e3f2..8be6dde 100644 --- a/Train/par/tensorflow/dncnn.yaml +++ b/Train/par/tensorflow/dncnn.yaml @@ -1,5 +1,9 @@ dncnn: - layers: 16 - weight_decay: 1.0e-6 - scale: 1 - channel: 3 + layers: 16 + weight_decay: 1.0e-6 + scale: 1 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/drcn.yaml b/Train/par/tensorflow/drcn.yaml index 6e3bee3..5b68062 100644 --- a/Train/par/tensorflow/drcn.yaml +++ b/Train/par/tensorflow/drcn.yaml @@ -1,8 +1,12 @@ drcn: - recur: 16 - filters: 256 - alpha: 1 - weight_decay: 1.0e-4 - custom_upsample: false - scale: 4 - channel: 3 \ No newline at end of file + recur: 16 + filters: 256 + alpha: 1 + weight_decay: 1.0e-4 + custom_upsample: false + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/drrn.yaml b/Train/par/tensorflow/drrn.yaml index fa8815e..520041e 100644 --- a/Train/par/tensorflow/drrn.yaml +++ b/Train/par/tensorflow/drrn.yaml @@ -1,8 +1,12 @@ drrn: - residual_unit: 9 - recursive_block: 1 - grad_clip: 0.01 - weight_decay: 1.0e-6 - custom_upsample: false - scale: 4 - channel: 3 \ No newline at end of file + residual_unit: 9 + recursive_block: 1 + grad_clip: 0.01 + weight_decay: 1.0e-6 + custom_upsample: false + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/drsr.yaml b/Train/par/tensorflow/drsr.yaml index 7f7f396..1d1a7a9 100644 --- a/Train/par/tensorflow/drsr.yaml +++ b/Train/par/tensorflow/drsr.yaml @@ -1,27 +1,27 @@ --- drsr: - name: 'drsr' - n_cb: 4 - n_crb: 4 - weights: [1, 0.5, 1.0e-6, 1.0e-3] - finetune: 4000 - noise_config: - max: 75.0 - scale: 1.0 - offset: 0.0 - offset2: 0.06 - penalty: 0.7 - layers: 8 - type: "gaussian" - crf: "../Data/crf.npz" - channel: 3 - scale: 4 - tfrecords: false + name: 'drsr' + n_cb: 4 + n_crb: 4 + weights: [1, 0.5, 1.0e-6, 1.0e-3] + finetune: 4000 + noise_config: + max: 75.0 + scale: 1.0 + offset: 0.0 + offset2: 0.06 + penalty: 0.7 + layers: 8 + type: "gaussian" + crf: "../Data/crf.npz" + channel: 3 + scale: 4 + tfrecords: false patch_size: 64 batch: 16 +lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [] - decay_rate: 1.0 - + method: multistep + decay_step: [] + decay_rate: 1.0 diff --git a/Train/par/tensorflow/drsr_v2.yaml b/Train/par/tensorflow/drsr_v2.yaml index 3317bdf..3fb0b7e 100644 --- a/Train/par/tensorflow/drsr_v2.yaml +++ b/Train/par/tensorflow/drsr_v2.yaml @@ -1,25 +1,25 @@ --- drsr_v2: - weights: [1, 10, 1.0e-5] - # mean_shift: [0, 0, 0] - level: 1 - arch: 'crdb' - auto_shift: true - noise_config: - max: 75.0 - scale: 1.0 - offset: 0.0 - penalty: 0.7 - layers: 8 - crf: "../Data/crf.npz" - valid: false - channel: 3 - scale: 4 + weights: [1, 10, 1.0e-5] + # mean_shift: [0, 0, 0] + level: 1 + arch: 'crdb' + auto_shift: true + noise_config: + max: 75.0 + scale: 1.0 + offset: 0.0 + penalty: 0.7 + layers: 8 + crf: "../Data/crf.npz" + valid: false + channel: 3 + scale: 4 patch_size: 128 batch: 16 lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [150000] - decay_rate: 0.1 + method: multistep + decay_step: [150000] + decay_rate: 0.1 diff --git a/Train/par/tensorflow/duf.yaml b/Train/par/tensorflow/duf.yaml index 2295193..fcb1a4e 100644 --- a/Train/par/tensorflow/duf.yaml +++ b/Train/par/tensorflow/duf.yaml @@ -1,6 +1,10 @@ duf: - scale: 4 - channel: 3 - layers: 16 - filter_size: [5, 5] - depth: 7 + scale: 4 + channel: 3 + layers: 16 + filter_size: [5, 5] + depth: 7 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/edsr.yaml b/Train/par/tensorflow/edsr.yaml index 96191e3..7df9b95 100644 --- a/Train/par/tensorflow/edsr.yaml +++ b/Train/par/tensorflow/edsr.yaml @@ -1,14 +1,14 @@ edsr: - layers: 32 - filters: 256 - clip: 0.1 - scale: 4 - channel: 3 + layers: 32 + filters: 256 + clip: 0.1 + scale: 4 + channel: 3 batch: 16 patch_size: 128 lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [150000] - decay_rate: 0.1 + method: multistep + decay_step: [150000] + decay_rate: 0.1 diff --git a/Train/par/tensorflow/espcn.yaml b/Train/par/tensorflow/espcn.yaml index cc3dcb7..abbe98f 100644 --- a/Train/par/tensorflow/espcn.yaml +++ b/Train/par/tensorflow/espcn.yaml @@ -1,11 +1,11 @@ # espcn 5-3-3 --- espcn: - layers: 3 - filters: [64, 32, 32] - kernel: [5, 3, 3] - scale: 4 - channel: 3 + layers: 3 + filters: [64, 32, 32] + kernel: [5, 3, 3] + scale: 4 + channel: 3 batch_shape: [16, 16, 16, 3] lr: 1.0e-2 diff --git a/Train/par/tensorflow/ffdnet.yaml b/Train/par/tensorflow/ffdnet.yaml index d422dd5..9e594c6 100644 --- a/Train/par/tensorflow/ffdnet.yaml +++ b/Train/par/tensorflow/ffdnet.yaml @@ -1,12 +1,12 @@ --- ffdnet: - sigma: 75 - space_down: 2 - channel: 3 - layers: 15 - training: true - weight_decay: 0 - scale: 1 + sigma: 75 + space_down: 2 + channel: 3 + layers: 15 + training: true + weight_decay: 0 + scale: 1 batch: 32 patch_size: 128 diff --git a/Train/par/tensorflow/frvsr.yaml b/Train/par/tensorflow/frvsr.yaml index d271f8b..1bbca24 100644 --- a/Train/par/tensorflow/frvsr.yaml +++ b/Train/par/tensorflow/frvsr.yaml @@ -6,3 +6,5 @@ frvsr: depth: 10 batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/gangp.yaml b/Train/par/tensorflow/gangp.yaml index 52a16f2..25e67d7 100644 --- a/Train/par/tensorflow/gangp.yaml +++ b/Train/par/tensorflow/gangp.yaml @@ -1,19 +1,19 @@ --- gangp: - name: gangp - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: gangp + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/idn.yaml b/Train/par/tensorflow/idn.yaml index ca52ec6..a60d715 100644 --- a/Train/par/tensorflow/idn.yaml +++ b/Train/par/tensorflow/idn.yaml @@ -1,10 +1,14 @@ idn: - blocks: 4 - filters: 64 - delta: 16 - slice_factor: 4 - leaky_slope: 0.05 - weight_decay: 1.0e-4 - fine_tune_epoch: 200 - scale: 4 - channel: 3 \ No newline at end of file + blocks: 4 + filters: 64 + delta: 16 + slice_factor: 4 + leaky_slope: 0.05 + weight_decay: 1.0e-4 + fine_tune_epoch: 200 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/lapsrn.yaml b/Train/par/tensorflow/lapsrn.yaml index fca0f80..ddcb50d 100644 --- a/Train/par/tensorflow/lapsrn.yaml +++ b/Train/par/tensorflow/lapsrn.yaml @@ -1,4 +1,8 @@ lapsrn: - layers: 5 - scale: 4 - channel: 3 \ No newline at end of file + layers: 5 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/lsgan.yaml b/Train/par/tensorflow/lsgan.yaml index a9a5450..b75509a 100644 --- a/Train/par/tensorflow/lsgan.yaml +++ b/Train/par/tensorflow/lsgan.yaml @@ -1,19 +1,19 @@ --- lsgan: - name: lsgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: lsgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/memnet.yaml b/Train/par/tensorflow/memnet.yaml index 3c4f2ab..35504fa 100644 --- a/Train/par/tensorflow/memnet.yaml +++ b/Train/par/tensorflow/memnet.yaml @@ -1,6 +1,10 @@ memnet: - n_memblock: 6 - n_recur: 6 - filters: 64 - scale: 4 - channel: 3 \ No newline at end of file + n_memblock: 6 + n_recur: 6 + filters: 64 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/msrn.yaml b/Train/par/tensorflow/msrn.yaml index 1bd6417..bfc8202 100644 --- a/Train/par/tensorflow/msrn.yaml +++ b/Train/par/tensorflow/msrn.yaml @@ -1,8 +1,8 @@ --- msrn: - n_blocks: 8 - scale: 4 - channel: 3 + n_blocks: 8 + scale: 4 + channel: 3 batch: 4 patch_size: 64 diff --git a/Train/par/tensorflow/nlrn.yaml b/Train/par/tensorflow/nlrn.yaml new file mode 100644 index 0000000..8f17324 --- /dev/null +++ b/Train/par/tensorflow/nlrn.yaml @@ -0,0 +1,10 @@ +nlrn: + scale: 4 + channel: 3 + filters: 128 + recurrents: 12 + clip: 2.5 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/ragan.yaml b/Train/par/tensorflow/ragan.yaml index 9603034..6731d27 100644 --- a/Train/par/tensorflow/ragan.yaml +++ b/Train/par/tensorflow/ragan.yaml @@ -1,19 +1,19 @@ --- ragan: - name: ragan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: ragan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/ragangp.yaml b/Train/par/tensorflow/ragangp.yaml index 9974de5..9078840 100644 --- a/Train/par/tensorflow/ragangp.yaml +++ b/Train/par/tensorflow/ragangp.yaml @@ -1,19 +1,19 @@ --- ragangp: - name: ragangp - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: ragangp + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/ralsgan.yaml b/Train/par/tensorflow/ralsgan.yaml index c3c4ee7..eba555e 100644 --- a/Train/par/tensorflow/ralsgan.yaml +++ b/Train/par/tensorflow/ralsgan.yaml @@ -1,19 +1,19 @@ --- ralsgan: - name: ralsgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: ralsgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/rcan.yaml b/Train/par/tensorflow/rcan.yaml index 3c03d56..6dafa94 100644 --- a/Train/par/tensorflow/rcan.yaml +++ b/Train/par/tensorflow/rcan.yaml @@ -1,7 +1,11 @@ rcan: - channel_downscaling: 16 - n_rcab: 4 - n_rg: 3 - filters: 64 - scale: 4 - channel: 3 + channel_downscaling: 16 + n_rcab: 4 + n_rg: 3 + filters: 64 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/rdn.yaml b/Train/par/tensorflow/rdn.yaml index 5fe13b7..3e08fd8 100644 --- a/Train/par/tensorflow/rdn.yaml +++ b/Train/par/tensorflow/rdn.yaml @@ -2,9 +2,13 @@ # (hard to train...) --- rdn: - rdb_blocks: 8 - rdb_conv: 8 - global_filters: 64 - rdb_filters: 64 - scale: 4 - channel: 3 \ No newline at end of file + rdb_blocks: 8 + rdb_conv: 8 + global_filters: 64 + rdb_filters: 64 + scale: 4 + channel: 3 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/rgan.yaml b/Train/par/tensorflow/rgan.yaml index f4ba2d4..227f97c 100644 --- a/Train/par/tensorflow/rgan.yaml +++ b/Train/par/tensorflow/rgan.yaml @@ -1,19 +1,19 @@ --- rgan: - name: rgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: rgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/rgangp.yaml b/Train/par/tensorflow/rgangp.yaml index 537fca6..f120b5d 100644 --- a/Train/par/tensorflow/rgangp.yaml +++ b/Train/par/tensorflow/rgangp.yaml @@ -1,19 +1,19 @@ --- rgangp: - name: rgangp - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: rgangp + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/rlsgan.yaml b/Train/par/tensorflow/rlsgan.yaml index 295cac5..5e4889d 100644 --- a/Train/par/tensorflow/rlsgan.yaml +++ b/Train/par/tensorflow/rlsgan.yaml @@ -1,19 +1,19 @@ --- rlsgan: - name: rlsgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: rlsgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/root.yaml b/Train/par/tensorflow/root.yaml deleted file mode 100644 index a7194fb..0000000 --- a/Train/par/tensorflow/root.yaml +++ /dev/null @@ -1,11 +0,0 @@ -# Common tf for all models -# Can also be override in individual yaml ---- -batch: 16 -patch_size: 48 -depth: 1 -lr: 1.0e-4 -lr_decay: - method: multistep - decay_step: [] - decay_rate: 1 diff --git a/Train/par/tensorflow/sgan.yaml b/Train/par/tensorflow/sgan.yaml index 0b97486..28ae6c9 100644 --- a/Train/par/tensorflow/sgan.yaml +++ b/Train/par/tensorflow/sgan.yaml @@ -1,19 +1,19 @@ --- sgan: - name: sgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: sgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/srcnn.yaml b/Train/par/tensorflow/srcnn.yaml index 351e01e..4211ee1 100644 --- a/Train/par/tensorflow/srcnn.yaml +++ b/Train/par/tensorflow/srcnn.yaml @@ -1,14 +1,14 @@ # srcnn 9-5-5 --- srcnn: - layers: 3 - kernel: - - 9 - - 5 - - 5 - custom_upsample: false - scale: 4 - channel: 1 + layers: 3 + kernel: + - 9 + - 5 + - 5 + custom_upsample: false + scale: 4 + channel: 1 batch: 4 patch_size: 64 diff --git a/Train/par/tensorflow/srdensenet.yaml b/Train/par/tensorflow/srdensenet.yaml index cba4d14..372fd35 100644 --- a/Train/par/tensorflow/srdensenet.yaml +++ b/Train/par/tensorflow/srdensenet.yaml @@ -1,8 +1,9 @@ --- srdensenet: - n_blocks: 8 - scale: 4 - channel: 3 + n_blocks: 8 + scale: 4 + channel: 3 patch_size: 100 -batch: 16 \ No newline at end of file +batch: 16 +lr: 1.0e-4 \ No newline at end of file diff --git a/Train/par/tensorflow/srfeat.yaml b/Train/par/tensorflow/srfeat.yaml index 8a68253..5f8b136 100644 --- a/Train/par/tensorflow/srfeat.yaml +++ b/Train/par/tensorflow/srfeat.yaml @@ -1,13 +1,14 @@ --- srfeat: - glayers: 16 - dlayers: 4 - vgg_layer: 'block5_conv4' - init_epoch: 100 - gan_weight: 1.0e-3 - vgg_weight: 0.1569 # (1 / 12.75)^2 - scale: 4 - channel: 3 + glayers: 16 + dlayers: 4 + vgg_layer: 'block5_conv4' + init_epoch: 100 + gan_weight: 1.0e-3 + vgg_weight: 0.1569 # (1 / 12.75)^2 + scale: 4 + channel: 3 patch_size: 128 -batch: 16 \ No newline at end of file +batch: 16 +lr: 1.0e-4 \ No newline at end of file diff --git a/Train/par/tensorflow/srgan.yaml b/Train/par/tensorflow/srgan.yaml index 99a1f32..1499d96 100644 --- a/Train/par/tensorflow/srgan.yaml +++ b/Train/par/tensorflow/srgan.yaml @@ -1,15 +1,16 @@ --- srgan: - glayers: 16 - dlayers: 4 - vgg_layer: 'block2_conv2' - init_epoch: 100 - vgg_weight: 1.0e-6 - use_vgg: true - mse_weight: 1 - gan_weight: 0.001 - scale: 4 - channel: 3 + glayers: 16 + dlayers: 4 + vgg_layer: 'block2_conv2' + init_epoch: 100 + vgg_weight: 1.0e-6 + use_vgg: true + mse_weight: 1 + gan_weight: 0.001 + scale: 4 + channel: 3 patch_size: 128 -batch: 16 \ No newline at end of file +batch: 16 +lr: 1.0e-4 \ No newline at end of file diff --git a/Train/par/tensorflow/vdsr.yaml b/Train/par/tensorflow/vdsr.yaml index 27ef142..2315d4d 100644 --- a/Train/par/tensorflow/vdsr.yaml +++ b/Train/par/tensorflow/vdsr.yaml @@ -1,7 +1,11 @@ --- vdsr: - layers: 20 - filters: 64 - custom_upsample: false - scale: 4 - channel: 1 \ No newline at end of file + layers: 20 + filters: 64 + custom_upsample: false + scale: 4 + channel: 1 + +batch: 16 +patch_size: 64 +lr: 1.0e-4 diff --git a/Train/par/tensorflow/vespcn.yaml b/Train/par/tensorflow/vespcn.yaml index 9fb9c6c..1d83843 100644 --- a/Train/par/tensorflow/vespcn.yaml +++ b/Train/par/tensorflow/vespcn.yaml @@ -1,17 +1,17 @@ # VESPCN need data depth to be 3, 5, or 7. (2n + 1) --- vespcn: - depth: 3 # this `depth` is to inform graph builder - beta: 1 - gamma: 0.01 - scale: 4 - channel: 3 - weight_decay: 0 + depth: 3 # this `depth` is to inform graph builder + beta: 1 + gamma: 0.01 + scale: 4 + channel: 3 + weight_decay: 0 batch: 4 patch_size: 96 depth: 3 # must be same as the model depth lr: 1.0e-4 lr_decay: - method: multistep - decay_step: [] - decay_rate: 1 + method: multistep + decay_step: [] + decay_rate: 1 diff --git a/Train/par/tensorflow/wgan.yaml b/Train/par/tensorflow/wgan.yaml index d56bdab..fcf53be 100644 --- a/Train/par/tensorflow/wgan.yaml +++ b/Train/par/tensorflow/wgan.yaml @@ -1,20 +1,20 @@ --- wgan: - name: wgan - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - nd_iter: 5 - use_bias: true - optimizer: - name: rmsprop - - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: wgan + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + nd_iter: 5 + use_bias: true + optimizer: + name: rmsprop + + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/par/tensorflow/wgangp.yaml b/Train/par/tensorflow/wgangp.yaml index ec2279b..392b2e1 100644 --- a/Train/par/tensorflow/wgangp.yaml +++ b/Train/par/tensorflow/wgangp.yaml @@ -1,20 +1,20 @@ --- wgangp: - name: wgangp - patch_size: 32 - z_dim: 128 - init_filter: 512 - linear: true # dense layer at the entry - norm_g: bn # null, bn or sn - norm_d: sn - use_bias: true - nd_iter: 5 - optimizer: - name: adam - beta1: 0.5 - channel: 3 - scale: 1 # keep scale is necessary though it's unused - + name: wgangp + patch_size: 32 + z_dim: 128 + init_filter: 512 + linear: true # dense layer at the entry + norm_g: bn # null, bn or sn + norm_d: sn + use_bias: true + nd_iter: 5 + optimizer: + name: adam + beta1: 0.5 + channel: 3 + scale: 1 # keep scale is necessary though it's unused + batch: 64 test_batch: 100 validate_every_n_epoch: 5 diff --git a/Train/train.py b/Train/train.py index 6689d83..60027e8 100644 --- a/Train/train.py +++ b/Train/train.py @@ -4,20 +4,22 @@ # Update: 2020 - 2 - 7 import argparse +import shutil from pathlib import Path from VSR.Backend import BACKEND from VSR.DataLoader import CenterCrop, Loader, RandomCrop from VSR.DataLoader import load_datasets from VSR.Model import get_model, list_supported_models -from VSR.Util import Config, lr_decay, suppress_opt_by_args, compat_param +from VSR.Util import Config, compat_param, lr_decay, suppress_opt_by_args +CWD = Path(__file__).resolve().parent.parent parser = argparse.ArgumentParser(description=f'VSR ({BACKEND}) Training Tool v1.0') g0 = parser.add_argument_group("basic options") g0.add_argument("model", choices=list_supported_models(), help="specify the model name") g0.add_argument("-p", "--parameter", help="specify the model parameter file (*.yaml)") -g0.add_argument("--save_dir", default='../Results', help="working directory") -g0.add_argument("--data_config", default="../Data/datasets.yaml", help="specify dataset config file") +g0.add_argument("--save_dir", default=f'{CWD}/Results', help="working directory") +g0.add_argument("--data_config", default=f"{CWD}/Data/datasets.yaml", help="specify dataset config file") g1 = parser.add_argument_group("training options") g1.add_argument("--dataset", default='none', help="specify a dataset alias for training") g1.add_argument("--epochs", type=int, default=1, help="specify total epochs to train") @@ -32,6 +34,8 @@ g3.add_argument("--pretrain", help="specify the pre-trained model checkpoint or will search into `save_dir` if not specified") g3.add_argument("--export", help="export ONNX (torch backend) or protobuf (tf backend) (needs support from model)") g3.add_argument("-c", "--comment", default=None, help="extend a comment string after saving folder") +g3.add_argument("--distributed", action="store_true") +g3.add_argument("--caching_dataset", action="store_true") def main(): @@ -48,9 +52,10 @@ def main(): if opt.parameter: model_config_file = Path(opt.parameter) else: - model_config_file = Path(f'par/{BACKEND}/{opt.model}.{_ext}') + model_config_file = Path(f'{CWD}/Train/par/{BACKEND}/{opt.model}.{_ext}') if model_config_file.exists(): opt.update(compat_param(Config(str(model_config_file)))) + break # get model parameters from pre-defined YAML file model_params = opt.get(opt.model, {}) suppress_opt_by_args(model_params, *args) @@ -61,6 +66,8 @@ def main(): model.cuda() if opt.pretrain: model.load(opt.pretrain) + if opt.distributed: + model.distributed() root = f'{opt.save_dir}/{opt.model}' if opt.comment: root += '_' + opt.comment @@ -87,9 +94,12 @@ def main(): lv.set_color_space('lr', 'L') # enter model executor environment with model.get_executor(root) as t: + if hasattr(t, '_logd') and isinstance(t._logd, Path): + shutil.copy(model_config_file, t._logd) config = t.query_config(opt) if opt.lr_decay: config.lr_schedule = lr_decay(lr=opt.lr, **opt.lr_decay) + config.caching = opt.caching_dataset and opt.memory_limit is None t.fit([lt, lv], config) if opt.export: t.export(opt.export) diff --git a/VSR/Backend/Keras/Framework/Environment.py b/VSR/Backend/Keras/Framework/Environment.py new file mode 100644 index 0000000..7325536 --- /dev/null +++ b/VSR/Backend/Keras/Framework/Environment.py @@ -0,0 +1,126 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import logging +from pathlib import Path + +import numpy as np +import tensorflow as tf + +LOG = logging.getLogger('VSR.Framework.Keras') + + +def _parse_ckpt_name(name): + if not name: + return 0 + model_name, epochs = Path(name).stem.split('-') + return int(epochs) + + +class Env: + """Pytorch model runtime Env-ironment. + + Args: + model: a Model object (note it's NOT nn.Module), representing a container + of multiple nn.Module objects. See `VSRTorch.Models.Model` for details. + work_dir: a folder path, working directory of this environment. + + Usage: + Use `with` syntax to enter the Env: + + >>> with Env(...) as e: ... + """ + + def __init__(self, model, work_dir=None): + self._m = model + self._saved = None + self._logd = None + if work_dir is not None: + self._saved = Path(work_dir) / 'save' + self._logd = Path(work_dir) / 'log' + self._restored = False + + def _startup(self): + if isinstance(self._saved, Path): + self._saved.mkdir(parents=True, exist_ok=True) + self.ckpt = tf.train.Checkpoint(**self.model.modules, **self.model.opts) + self.saver = tf.train.CheckpointManager(self.ckpt, self._saved, None, + checkpoint_name=self.model.name) + if isinstance(self._logd, Path): + self._logd.mkdir(parents=True, exist_ok=True) + _logger = logging.getLogger('VSR') + if _logger.isEnabledFor(logging.DEBUG): + fd = logging.FileHandler(self._logd / 'vsr_debug.log', encoding='utf-8') + fd.setFormatter( + logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")) + _logger.addHandler(fd) + + def _close(self): + """TODO anything to close?""" + pass + + def __enter__(self): + """Create session of tensorflow and build model graph""" + + self._startup() + self.model.display() + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + """Close session""" + + self._close() + + @property + def model(self): + return self._m + + def _restore_model(self): + last_epoch = 0 + ckpt = self.saver.latest_checkpoint + if ckpt: + self.ckpt.restore(ckpt) + try: + last_epoch = max(_parse_ckpt_name(str(ckpt)), last_epoch) + except ValueError: + last_epoch = 0 + return last_epoch + + def _save_model(self, step): + if not isinstance(self._saved, Path): return + self.saver.save(step) + + def _restore(self, epoch=None): + # restore graph + if self._restored: + return self.last_epoch + self.last_epoch = self._restore_model() + self._restored = True + return self.last_epoch + + def set_seed(self, seed): + """set a seed for RNG + + Note: RNG in tensorflow and numpy is different. + """ + + np.random.seed(seed) + tf.random.set_seed(seed) + + def export(self, export_dir='.', version=1): + """export saved model. + + Args: + export_dir: path to saved_model dirs. + version: (optional) a child-folder to control output versions. + """ + + export_path = Path(export_dir) / str(version) + while export_path.exists(): + version += 1 # step ahead 1 version + export_path = Path(export_dir) / str(version) + export_path.mkdir(exist_ok=False, parents=True) + self.model.export(export_path) + LOG.info(f"Export saved model to {str(export_path)}") diff --git a/VSR/Backend/Keras/Framework/Trainer.py b/VSR/Backend/Keras/Framework/Trainer.py new file mode 100644 index 0000000..d3ee00e --- /dev/null +++ b/VSR/Backend/Keras/Framework/Trainer.py @@ -0,0 +1,196 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import logging + +import numpy as np +import tensorflow as tf +import tqdm + +from VSR.Util.Config import Config +from VSR.Util.Ensemble import Ensembler +from .Environment import Env + +LOG = logging.getLogger('VSR.Framework.Keras') + + +def to_tensor(x): + return x / 255.0 + + +def from_tensor(x): + return x * 255.0 + + +class SRTrainer(Env): + v = Config() + + def query_config(self, config, **kwargs): + config = Config(config or {}) + config.update(kwargs) + self.v.epochs = config.epochs or 1 # total epochs + self.v.batch_shape = config.batch_shape or [1, -1, -1, -1] + self.v.steps = config.steps or 200 + self.v.val_steps = config.val_steps or -1 + self.v.lr = config.lr or 1e-4 # learning rate + self.v.lr_schedule = config.lr_schedule + self.v.memory_limit = config.memory_limit + self.v.inference_results_hooks = config.inference_results_hooks or [] + self.v.validate_every_n_epoch = config.validate_every_n_epoch or 1 + self.v.traced_val = config.traced_val + self.v.ensemble = config.ensemble + self.v.cuda = config.cuda + self.v.caching = config.caching_dataset + return self.v + + def fit_init(self) -> bool: + v = self.v + v.epoch = self._restore() + if v.epoch >= v.epochs: + LOG.info(f'Found pre-trained epoch {v.epoch}>=target {v.epochs},' + ' quit fitting.') + return False + LOG.info(f'Fitting: {self.model.name.upper()}') + if self._logd: + v.writer = tf.summary.create_file_writer(str(self._logd), + name=self.model.name) + v.writer.set_as_default() + return True + + def fit_close(self): + # flush all pending summaries to disk + LOG.info(f'Training {self.model.name.upper()} finished.') + if self.v.writer is not None: + self.v.writer.close() + + def fit(self, loaders, config, **kwargs): + v = self.query_config(config, **kwargs) + v.train_loader, v.val_loader = loaders + if not self.fit_init(): + return + mem = v.memory_limit + for epoch in range(self.last_epoch + 1, v.epochs + 1): + v.epoch = epoch + train_iter = v.train_loader.make_one_shot_iterator(v.batch_shape, + v.steps, + shuffle=True, + memory_limit=mem, + caching=v.caching) + v.train_loader.prefetch(shuffle=True, memory_usage=mem) + v.avg_meas = {} + if v.lr_schedule and callable(v.lr_schedule): + v.lr = v.lr_schedule(steps=v.epoch) + LOG.info(f"| Epoch: {v.epoch}/{v.epochs} | LR: {v.lr:.2g} |") + with tqdm.tqdm(train_iter, unit='batch', ascii=True) as r: + self.model.to_train() + for items in r: + self.fn_train_each_step(items) + r.set_postfix(v.loss) + for _k, _v in v.avg_meas.items(): + _v = np.mean(_v) + tf.summary.scalar(_k, _v, step=v.epoch, description='train') + LOG.info(f"| Epoch average {_k} = {_v:.6f} |") + if v.epoch % v.validate_every_n_epoch == 0 and v.val_loader: + # Hard-coded memory limitation for validating + self.benchmark(v.val_loader, v, memory_limit='1GB') + self._save_model(v.epoch) + self.fit_close() + + def fn_train_each_step(self, pack): + v = self.v + feature = to_tensor(pack['lr']) + label = to_tensor(pack['hr']) + loss = self.model.train([feature], [label], v.lr) + for _k, _v in loss.items(): + v.avg_meas[_k] = \ + v.avg_meas[_k] + [_v] if v.avg_meas.get(_k) else [_v] + loss[_k] = '{:08.5f}'.format(_v) + v.loss = loss + + def benchmark(self, loader, config, **kwargs): + """Benchmark/validate the model. + + Args: + loader: a loader for enumerating LR images + config: benchmark configuration, an instance of `Util.Config.Config` + kwargs: additional arguments to override the same ones in config. + """ + v = self.query_config(config, **kwargs) + self._restore(config.epoch) + v.mean_metrics = {} + v.loader = loader + it = v.loader.make_one_shot_iterator(v.batch_shape, v.val_steps, + shuffle=not v.traced_val, + memory_limit=v.memory_limit, + caching=v.caching) + self.model.to_eval() + for items in tqdm.tqdm(it, 'Test', ascii=True): + self.fn_benchmark_each_step(items) + log_message = str() + for _k, _v in v.mean_metrics.items(): + _v = np.mean(_v) + tf.summary.scalar(_k, _v, step=v.epoch, description='eval') + log_message += f"{_k}: {_v:.6f}, " + log_message = log_message[:-2] + "." + LOG.info(log_message) + + def fn_benchmark_each_step(self, pack): + v = self.v + feature = to_tensor(pack['lr']) + label = to_tensor(pack['hr']) + outputs, metrics = self.model.eval([feature], [label], epoch=v.epoch) + for _k, _v in metrics.items(): + if _k not in v.mean_metrics: + v.mean_metrics[_k] = [] + v.mean_metrics[_k] += [_v] + outputs = [from_tensor(x) for x in outputs] + for fn in v.inference_results_hooks: + outputs = fn(outputs, names=pack['name']) + if outputs is None: + break + + def infer(self, loader, config, **kwargs): + """Infer SR images. + + Args: + loader: a loader for enumerating LR images + config: inferring configuration, an instance of `Util.Config.Config` + kwargs: additional arguments to override the same ones in config. + """ + v = self.query_config(config, **kwargs) + self._restore(config.epoch) + it = loader.make_one_shot_iterator([1, -1, -1, -1], -1) + if hasattr(it, '__len__'): + if len(it) == 0: + return + LOG.info(f"Inferring {self.model.name} at epoch {self.last_epoch}") + # use original images in inferring + self.model.to_eval() + for items in tqdm.tqdm(it, 'Infer', ascii=True): + self.fn_infer_each_step(items) + + def fn_infer_each_step(self, pack): + v = self.v + if v.ensemble: + # add self-ensemble boosting metric score + feature_ensemble = Ensembler.expand(pack['lr']) + outputs_ensemble = [] + for f in feature_ensemble: + f = to_tensor(f) + y, _ = self.model.eval([f]) + y = [from_tensor(x) for x in y] + outputs_ensemble.append(y) + outputs = [] + for i in range(len(outputs_ensemble[0])): + outputs.append([j[i] for j in outputs_ensemble]) + outputs = Ensembler.merge(outputs) + else: + feature = to_tensor(pack['lr']) + outputs, _ = self.model.eval([feature]) + outputs = [from_tensor(x) for x in outputs] + for fn in v.inference_results_hooks: + outputs = fn(outputs, names=pack['name']) + if outputs is None: + break diff --git a/VSR/Backend/Keras/Framework/__init__.py b/VSR/Backend/Keras/Framework/__init__.py new file mode 100644 index 0000000..69a01b3 --- /dev/null +++ b/VSR/Backend/Keras/Framework/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + diff --git a/VSR/Backend/Keras/Models/Model.py b/VSR/Backend/Keras/Models/Model.py new file mode 100644 index 0000000..c5aace6 --- /dev/null +++ b/VSR/Backend/Keras/Models/Model.py @@ -0,0 +1,138 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import logging + +import tensorflow as tf + +from .. import LOG +from ..Framework.Trainer import SRTrainer + + +class BasicModel: + """Trainable model wrapper for keras.Model objects + + There are 2 built-in attributes: + - modules: contains a K-V pair of `str: Model`. It will be automatically + appended if a derived object assign any attribute with `Model` object. + - opts: contains a K-V pair of `str: Optimizer`. Will be automatically + appended if a derived object assign any attribute with `Optimizer`. + """ + + def __init__(self, **kwargs): + self.modules = {} + self.opts = {} + self.name = kwargs.get('name', 'model') + self._trainer = None + + def __setattr__(self, key, value): + if key in ('modules', 'opts',): + if hasattr(self, key): + raise ValueError(f"Can't overwrite built-in '{key}' of BasicModel") + if isinstance(value, tf.keras.Model): + if key in self.modules: + if self.modules[key] is value: + return + else: + # TODO: why assign twice?? + raise NotImplementedError + else: + self.modules[key] = value + if isinstance(value, tf.keras.optimizers.Optimizer): + if key in self.opts: + if self.opts[key] is value: + return + else: + raise NotImplementedError + else: + self.opts[key] = value + + return super(BasicModel, self).__setattr__(key, value) + + def trainable_variables(self, name=None): + """Return variables who require gradients. + + Args: + name: module name. Will return all trainable variables if no name given. + """ + + _m = [self.modules.get(name)] if name else self.modules.values() + _var = [] + for i in _m: + _var += i.trainable_variables + return _var + + def to_train(self): + """Change modules to train mode.""" + pass + + def train(self, *args, **kwargs): + """Forward and backward data path. + The trainer knows data pipeline through this callback.""" + raise NotImplementedError + + def to_eval(self): + """Change modules to evaluate mode.""" + pass + + def eval(self, *args, **kwargs): + """Forward data path. No backward needed for this is only for testing.""" + raise NotImplementedError + + def display(self): + """Show model info""" + num_params = 0 + for m in self.modules.values(): + for p in m.variables: + num_params += p.get_shape().num_elements() + LOG.info(f"Total params: {num_params}") + if LOG.isEnabledFor(logging.DEBUG): + [v.summary() for v in self.modules.values()] + + def cuda(self): + """Move model to cuda device.""" + pass + + def distributed(self): + pass + + def export(self, export_dir): + """export keras model. + + Args: + export_dir: path to save pb files. + """ + + raise NotImplementedError("Should implement in specific model!") + + @property + def executor(self): + """Return the trainer class type for this model.""" + return self.get_executor(None) + + def get_executor(self, root): + if issubclass(self._trainer.__class__, type): + self._trainer = self._trainer(self, root) + return self._trainer + else: + return self._trainer + + def load(self, ckpt): + for key, model in self.modules.items(): + if not isinstance(ckpt, dict): + model.load_weights(str(ckpt)) + break + model.load_weights(str(ckpt[key])) + + +class SuperResolution(BasicModel): + """A default model for (video) super-resolution""" + + def __init__(self, scale, channel, **kwargs): + super(SuperResolution, self).__init__(**kwargs) + self.scale = scale + self.channel = channel + # Default SR trainer + self._trainer = SRTrainer diff --git a/VSR/Backend/Keras/Models/Srcnn.py b/VSR/Backend/Keras/Models/Srcnn.py new file mode 100644 index 0000000..b7a249a --- /dev/null +++ b/VSR/Backend/Keras/Models/Srcnn.py @@ -0,0 +1,65 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import tensorflow as tf + +from .Model import SuperResolution + + +class Srcnn(tf.keras.Model): + def __init__(self, channel, filters): + super(Srcnn, self).__init__() + self.net = [ + tf.keras.layers.Conv2D(64, filters[0], padding='same', + activation=tf.nn.relu), + tf.keras.layers.Conv2D(32, filters[1], padding='same', + activation=tf.nn.relu), + tf.keras.layers.Conv2D(channel, filters[2], padding='same')] + + def call(self, inputs): + x = inputs + for layer in self.net: + x = layer(x) + return x + + +class SRCNN(SuperResolution): + def __init__(self, channel, scale, **kwargs): + super(SRCNN, self).__init__(scale=scale, channel=channel, name='srcnn') + self.net = Srcnn(channel, kwargs.get('filters', (9, 1, 5))) + self.net(tf.keras.Input([None, None, channel])) + self.opt = tf.keras.optimizers.Adam(learning_rate=1e-4) + + def train(self, inputs, labels, learning_rate=None): + lr_image = inputs[0] + _, H, W, _ = lr_image.shape + bi_image = tf.image.resize(lr_image, [H * self.scale, W * self.scale], + tf.image.ResizeMethod.BICUBIC) + with tf.GradientTape() as tape: + sr = self.net(bi_image) + pixel_loss = tf.reduce_mean(tf.losses.mean_squared_error(labels[0], sr)) + variables = self.trainable_variables() + grads = tape.gradient(pixel_loss, variables) + if learning_rate: + self.opt.learning_rate = learning_rate + self.opt.apply_gradients(zip(grads, variables)) + return { + 'loss': pixel_loss.numpy() + } + + def eval(self, inputs, labels=None, **kwargs): + metrics = {} + lr_image = inputs[0] + _, H, W, _ = lr_image.shape + bi_image = tf.image.resize(lr_image, [H * self.scale, W * self.scale], + tf.image.ResizeMethod.BICUBIC) + sr = self.net(bi_image) + if labels is not None: + metrics['psnr'] = tf.image.psnr(sr, labels[0], 1.0) + step = kwargs.get('epoch') + tf.summary.image('sr', sr, step=step, max_outputs=1) + tf.summary.image('bicubic', bi_image, step=step, max_outputs=1) + tf.summary.image('gt', labels[0], step=step, max_outputs=1) + return [sr.numpy()], metrics diff --git a/VSR/Backend/Keras/Models/__init__.py b/VSR/Backend/Keras/Models/__init__.py new file mode 100644 index 0000000..f038db1 --- /dev/null +++ b/VSR/Backend/Keras/Models/__init__.py @@ -0,0 +1,24 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import importlib + +__all__ = ['get_model', 'list_supported_models'] + +models = { + # alias: (file, class) + 'srcnn': ('Srcnn', 'SRCNN'), +} + + +def get_model(name): + module = f'.Backend.Keras.Models.{models[name][0]}' + package = 'VSR' + m = importlib.import_module(module, package) + return m.__dict__[models[name][1]] + + +def list_supported_models(): + return models.keys() diff --git a/VSR/Backend/Keras/__init__.py b/VSR/Backend/Keras/__init__.py new file mode 100644 index 0000000..f09827e --- /dev/null +++ b/VSR/Backend/Keras/__init__.py @@ -0,0 +1,23 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +from .. import LOG + +import tensorflow as tf + +ver_major, ver_minor, _ = [int(s) for s in tf.__version__.split('.')] +if ver_major < 2: + LOG.warning("legacy tensorflow 1.x is not verified in keras backend") + +gpus = tf.config.experimental.list_physical_devices('GPU') +if gpus: + # Restrict TensorFlow to only use the first GPU + try: + # Currently, memory growth needs to be the same across GPUs + for gpu in gpus: + tf.config.experimental.set_memory_growth(gpu, True) + except RuntimeError as e: + # Visible devices must be set before GPUs have been initialized + print(e) diff --git a/VSR/Backend/TF/Arch/Dense.py b/VSR/Backend/TF/Arch/Dense.py index 395985d..84d599a 100644 --- a/VSR/Backend/TF/Arch/Dense.py +++ b/VSR/Backend/TF/Arch/Dense.py @@ -7,8 +7,7 @@ Architectures of common dense blocks used in SR researches """ -import tensorflow as tf - +from .. import tf from ..Framework.LayersHelper import Layers diff --git a/VSR/Backend/TF/Arch/Discriminator.py b/VSR/Backend/TF/Arch/Discriminator.py index 3823a4e..d9911c7 100644 --- a/VSR/Backend/TF/Arch/Discriminator.py +++ b/VSR/Backend/TF/Arch/Discriminator.py @@ -7,8 +7,8 @@ Architectures of common discriminator """ import numpy as np -import tensorflow as tf +from .. import tf from ..Framework.LayersHelper import Layers diff --git a/VSR/Backend/TF/Arch/Residual.py b/VSR/Backend/TF/Arch/Residual.py index 61e2ec7..f241c64 100644 --- a/VSR/Backend/TF/Arch/Residual.py +++ b/VSR/Backend/TF/Arch/Residual.py @@ -6,9 +6,8 @@ Architectures of common residual blocks used in SR researches """ -import tensorflow as tf - from VSR.Util import to_list +from .. import tf from ..Framework.LayersHelper import Layers @@ -81,8 +80,8 @@ def cascade_block(layers: Layers, inputs, depth=4, x = layers.resblock(inputs, f, k, activation=act) feat.append(x) inputs = layers.conv2d( - tf.concat(feat, axis=-1), f, 1, - kernel_initializer='he_uniform') + tf.concat(feat, axis=-1), f, 1, + kernel_initializer='he_uniform') inputs = layers.conv2d(inputs, f, k) return inputs diff --git a/VSR/Backend/TF/Framework/GAN.py b/VSR/Backend/TF/Framework/GAN.py index 25e4255..9134029 100644 --- a/VSR/Backend/TF/Framework/GAN.py +++ b/VSR/Backend/TF/Framework/GAN.py @@ -1,5 +1,5 @@ """ -Copyright: Wenyi Tang 2017-2018 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: July 20th 2018 @@ -11,10 +11,14 @@ from functools import partial import numpy as np -import tensorflow as tf +from .. import tf, tfc, ver_major, ver_minor _INCEPTION_BATCH = 50 -_TFGAN = tf.contrib.gan.eval +if ver_major == 1 and ver_minor <= 14: + _TFGAN = tfc.gan.eval +else: + raise ImportError("tfc.gan was removed since 1.15.0. " + "Please downgrade to 1.14.0 or use pytorch backend.") def _preprocess_for_inception(images): @@ -36,9 +40,9 @@ def _preprocess_for_inception(images): images = tf.identity(images) preprocessed_images = tf.map_fn( - fn=_TFGAN.preprocess_image, - elems=images, - back_prop=False) + fn=_TFGAN.preprocess_image, + elems=images, + back_prop=False) return preprocessed_images @@ -51,7 +55,7 @@ def _run_inception(images, layer_name, inception_graph): def fid_score(real_image, gen_image, num_batches=None): - """FID function from tf.contrib + """FID function from tfc Args: real_image: must be 4-D tensor, ranges from [0, 255] @@ -67,9 +71,9 @@ def fid_score(real_image, gen_image, num_batches=None): if not num_batches: num_batches = (batches + _INCEPTION_BATCH - 1) // _INCEPTION_BATCH graph = _TFGAN.get_graph_def_from_url_tarball( - 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz', - 'inceptionv1_for_inception_score.pb', - '/tmp/frozen_inception_v1_2015_12_05.tar.gz') + 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz', + 'inceptionv1_for_inception_score.pb', + '/tmp/frozen_inception_v1_2015_12_05.tar.gz') # make tensor batches real_ph = tf.placeholder(tf.float32, [_INCEPTION_BATCH, *real_image.shape[1:]]) @@ -84,22 +88,22 @@ def fid_score(real_image, gen_image, num_batches=None): gen_image = np.split(gen_image, num_batches) for i in range(num_batches): r, g = sess.run( - [real_features, gen_features], - feed_dict={real_ph: real_image[i], gen_ph: gen_image[i]}) + [real_features, gen_features], + feed_dict={real_ph: real_image[i], gen_ph: gen_image[i]}) real_feature_np.append(r) gen_feature_np.append(g) real_feature_np = np.concatenate(real_feature_np) gen_feature_np = np.concatenate(gen_feature_np) fid_tensor = _TFGAN.frechet_classifier_distance( - classifier_fn=tf.identity, - real_images=real_feature_np, - generated_images=gen_feature_np, - num_batches=num_batches) + classifier_fn=tf.identity, + real_images=real_feature_np, + generated_images=gen_feature_np, + num_batches=num_batches) return fid_tensor def inception_score(images, num_batches=None): - """IS function from tf.contrib + """IS function from tfc Args: images: must be 4-D tensor, ranges from [0, 255] @@ -110,15 +114,15 @@ def inception_score(images, num_batches=None): if not num_batches: num_batches = (batches + _INCEPTION_BATCH - 1) // _INCEPTION_BATCH graph = _TFGAN.get_graph_def_from_url_tarball( - 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz', - 'inceptionv1_for_inception_score.pb', - '/tmp/frozen_inception_v1_2015_12_05.tar.gz') + 'http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz', + 'inceptionv1_for_inception_score.pb', + '/tmp/frozen_inception_v1_2015_12_05.tar.gz') return _TFGAN.classifier_score( - images=images, - classifier_fn=partial(_run_inception, - layer_name='logits:0', - inception_graph=graph), - num_batches=num_batches) + images=images, + classifier_fn=partial(_run_inception, + layer_name='logits:0', + inception_graph=graph), + num_batches=num_batches) def loss_bce_gan(y_real, y_fake): @@ -168,7 +172,7 @@ def gradient_penalty(y_true, y_pred, graph_fn, lamb=10): interp = y_true + alpha * diff gradients = tf.gradients(graph_fn(interp), [interp])[0] slopes = tf.sqrt(1e-4 + tf.reduce_sum( - tf.square(gradients), reduction_indices=[1, 2, 3])) + tf.square(gradients), reduction_indices=[1, 2, 3])) gp = tf.reduce_mean(tf.square(slopes - 1.)) return lamb * gp diff --git a/VSR/Backend/TF/Framework/LayersHelper.py b/VSR/Backend/TF/Framework/LayersHelper.py index abf6f5b..9c1e7fe 100644 --- a/VSR/Backend/TF/Framework/LayersHelper.py +++ b/VSR/Backend/TF/Framework/LayersHelper.py @@ -1,14 +1,14 @@ """ -Copyright: Wenyi Tang 2017-2018 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: Sep 5th 2018 commonly used layers helper """ -import tensorflow as tf from VSR.Util import to_list +from .. import tf from ..Util import ( SpectralNorm, TorchInitializer, pixel_shift, pop_dict_wo_keyerror, prelu ) @@ -25,22 +25,25 @@ def batch_norm(self, x, training, decay=0.9, epsilon=1e-5, name=None): name=name) def instance_norm(self, x, trainable=True, name=None, reuse=None): + from .. import tfc with tf.variable_scope(name, 'InstanceNorm', reuse=reuse): - return tf.contrib.layers.instance_norm( + return tfc.layers.instance_norm( x, trainable=trainable, variables_collections=[tf.GraphKeys.GLOBAL_VARIABLES]) def layer_norm(self, x, trainable=True, name=None, reuse=None): + from .. import tfc with tf.variable_scope(name, 'LayerNorm', reuse=reuse): - return tf.contrib.layers.layer_norm( + return tfc.layers.layer_norm( x, trainable=trainable, variables_collections=[tf.GraphKeys.GLOBAL_VARIABLES]) def group_norm(self, x, group, axis, trainable=True, name=None, reuse=None): + from .. import tfc with tf.variable_scope(name, 'GroupNorm', reuse=reuse): - return tf.contrib.layers.group_norm( + return tfc.layers.group_norm( x, group, axis, trainable=trainable, variables_collections=[tf.GraphKeys.GLOBAL_VARIABLES]) diff --git a/VSR/Backend/TF/Framework/Motion.py b/VSR/Backend/TF/Framework/Motion.py index 79e02b5..a41521d 100644 --- a/VSR/Backend/TF/Framework/Motion.py +++ b/VSR/Backend/TF/Framework/Motion.py @@ -7,7 +7,8 @@ Utility for motion compensation """ import numpy as np -import tensorflow as tf + +from .. import tf def _grid_norm(width, height, bounds=(-1.0, 1.0)): diff --git a/VSR/Backend/TF/Framework/Noise.py b/VSR/Backend/TF/Framework/Noise.py index 0293283..347788a 100644 --- a/VSR/Backend/TF/Framework/Noise.py +++ b/VSR/Backend/TF/Framework/Noise.py @@ -1,5 +1,5 @@ """ -Copyright: Wenyi Tang 2017-2019 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: Dec 25th 2018 @@ -9,7 +9,7 @@ [1] https://arxiv.org/abs/1807.04686 """ -import tensorflow as tf +from .. import tf def tf_camera_response_function(inputs, crf_table, max_val=1): diff --git a/VSR/Backend/TF/Framework/SuperResolution.py b/VSR/Backend/TF/Framework/SuperResolution.py index 21ce71c..843a786 100644 --- a/VSR/Backend/TF/Framework/SuperResolution.py +++ b/VSR/Backend/TF/Framework/SuperResolution.py @@ -1,5 +1,5 @@ """ -Copyright: Wenyi Tang 2017-2018 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: May 9th 2018 @@ -10,14 +10,14 @@ import logging from pathlib import Path -import tensorflow as tf - from VSR.Util import to_list from .LayersHelper import Layers from .Trainer import VSR +from .. import tf LOG = logging.getLogger('VSR.Framework.TF') + class SuperResolution(Layers): """A utility class helps for building SR architectures easily @@ -87,6 +87,9 @@ def get_executor(self, root): def cuda(self): pass + def distributed(self): + pass + def load(self, ckpt): self.pre_ckpt = ckpt @@ -130,7 +133,7 @@ def build_graph(self): self.inputs.append( tf.placeholder(tf.uint8, shape=[None, None, None, None], name='input/lr')) - inputs_f = tf.to_float(self.inputs[0]) + inputs_f = tf.cast(self.inputs[0], dtype=tf.float32) # separate additional channels (e.g. alpha channel) self.inputs_preproc.append(inputs_f[..., self.channel:]) self.inputs_preproc.append(inputs_f[..., :self.channel]) diff --git a/VSR/Backend/TF/Framework/Trainer.py b/VSR/Backend/TF/Framework/Trainer.py index 098f1a5..a9f7aa7 100644 --- a/VSR/Backend/TF/Framework/Trainer.py +++ b/VSR/Backend/TF/Framework/Trainer.py @@ -1,5 +1,5 @@ """ -Copyright: Wenyi Tang 2017-2018 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: Oct 15th 2018 @@ -9,14 +9,13 @@ """ import logging -import time from pathlib import Path import numpy as np -import tensorflow as tf import tqdm from VSR.Util import Config, to_list +from .. import tf LOG = logging.getLogger('VSR.Framework') @@ -91,9 +90,12 @@ def _startup(self): self._saved.mkdir(parents=True, exist_ok=True) if isinstance(self._logd, Path): self._logd.mkdir(parents=True, exist_ok=True) - if LOG.isEnabledFor(logging.DEBUG): - hdl = logging.FileHandler(self._logd / 'training.txt') - LOG.addHandler(hdl) + _logger = logging.getLogger('VSR') + if _logger.isEnabledFor(logging.DEBUG): + fd = logging.FileHandler(self._logd / 'vsr_debug.log', encoding='utf-8') + fd.setFormatter( + logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")) + _logger.addHandler(fd) if self.model.compiled: self.graph = tf.get_default_graph() else: @@ -231,6 +233,7 @@ def query_config(self, config, **kwargs) -> Config: self.v.traced_val = config.traced_val self.v.ensemble = config.ensemble self.v.cuda = config.cuda + self.v.caching = config.caching_dataset return self.v def fit_init(self) -> bool: @@ -258,20 +261,19 @@ def fn_train_each_epoch(self): train_iter = v.train_loader.make_one_shot_iterator(v.batch_shape, v.steps, shuffle=True, - memory_limit=mem) + memory_limit=mem, + caching=v.caching) v.train_loader.prefetch(v.memory_limit) - date = time.strftime('%Y-%m-%d %T', time.localtime()) v.avg_meas = {} if v.lr_schedule and callable(v.lr_schedule): v.lr = v.lr_schedule(steps=v.global_step) - print('| {} | Epoch: {}/{} | LR: {:.2g} |'.format( - date, v.epoch, v.epochs, v.lr)) + LOG.info(f"| Epoch: {v.epoch}/{v.epochs} | LR: {v.lr:.2g} |") with tqdm.tqdm(train_iter, unit='batch', ascii=True) as r: for items in r: self.fn_train_each_step(items) r.set_postfix(v.loss) for _k, _v in v.avg_meas.items(): - print('| Epoch average {} = {:.6f} |'.format(_k, np.mean(_v))) + LOG.info(f"| Epoch average {_k} = {np.mean(_v):.6f} |") if v.epoch % v.validate_every_n_epoch == 0 and v.val_loader: self.benchmark(v.val_loader, v, epoch=v.epoch, memory_limit='1GB') v.summary_writer.add_summary(self.model.summary(), v.global_step) @@ -325,7 +327,8 @@ def fn_benchmark_body(self): v = self.v it = v.loader.make_one_shot_iterator(v.batch_shape, v.val_steps, shuffle=not v.traced_val, - memory_limit=v.memory_limit) + memory_limit=v.memory_limit, + caching=v.caching) for items in tqdm.tqdm(it, 'Test', ascii=True): self.fn_benchmark_each_step(items) @@ -386,6 +389,9 @@ def benchmark(self, loader, config, **kwargs): v.mean_metrics = {} v.loader = loader self.fn_benchmark_body() + log_message = str() for _k, _v in v.mean_metrics.items(): - print('{}: {:.6f}'.format(_k, np.mean(_v)), end=', ') - print('') + _v = np.mean(_v) + log_message += f"{_k}: {_v:.6f}, " + log_message = log_message[:-2] + "." + LOG.info(log_message) diff --git a/VSR/Backend/TF/Models/Carn.py b/VSR/Backend/TF/Models/Carn.py index 80e4d1c..e4504b6 100644 --- a/VSR/Backend/TF/Models/Carn.py +++ b/VSR/Backend/TF/Models/Carn.py @@ -8,8 +8,7 @@ See https://arxiv.org/abs/1803.08664 """ -import tensorflow as tf - +from .. import tf, tfc from ..Framework.SuperResolution import SuperResolution @@ -97,7 +96,7 @@ def build_loss(self): with tf.control_dependencies(update_op): opt = tf.train.AdamOptimizer(self.learning_rate) var_n_grad = opt.compute_gradients(loss) - grad_clip = tf.contrib.training.clip_gradient_norms( + grad_clip = tfc.training.clip_gradient_norms( var_n_grad, self.clip) opt = opt.apply_gradients(grad_clip, self.global_steps) self.loss.append(opt) diff --git a/VSR/Backend/TF/Models/Crdn.py b/VSR/Backend/TF/Models/Crdn.py index 89fccfb..bf5c42a 100644 --- a/VSR/Backend/TF/Models/Crdn.py +++ b/VSR/Backend/TF/Models/Crdn.py @@ -7,13 +7,7 @@ Cascaded Residual Dense Network (NTIRE 2019) """ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午8:28 - -import tensorflow as tf - +from .. import tf from ..Arch.Residual import cascade_rdn from ..Framework.SuperResolution import SuperResolution from ..Util import clip_image @@ -85,9 +79,9 @@ def build_loss(self): self.train_metric['l1'] = l1 self.metrics['psnr'] = tf.reduce_mean( - tf.image.psnr(self.label[-1], self.outputs[-1], max_val=255)) + tf.image.psnr(self.label[-1], self.outputs[-1], max_val=255)) self.metrics['ssim'] = tf.reduce_mean( - tf.image.ssim(self.label[-1], self.outputs[-1], max_val=255)) + tf.image.ssim(self.label[-1], self.outputs[-1], max_val=255)) def build_summary(self): super(CRDN, self).build_summary() diff --git a/VSR/Backend/TF/Models/Dbpn.py b/VSR/Backend/TF/Models/Dbpn.py index 2dc7905..c3c478d 100644 --- a/VSR/Backend/TF/Models/Dbpn.py +++ b/VSR/Backend/TF/Models/Dbpn.py @@ -10,8 +10,8 @@ """ import numpy as np -import tensorflow as tf +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Dcscn.py b/VSR/Backend/TF/Models/Dcscn.py index 6772236..bb2f42f 100644 --- a/VSR/Backend/TF/Models/Dcscn.py +++ b/VSR/Backend/TF/Models/Dcscn.py @@ -9,8 +9,7 @@ Deep CNN with Skip Connection and Network in Network See https://arxiv.org/abs/1707.05425 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/DnCnn.py b/VSR/Backend/TF/Models/DnCnn.py index f04342b..86e2c39 100644 --- a/VSR/Backend/TF/Models/DnCnn.py +++ b/VSR/Backend/TF/Models/DnCnn.py @@ -8,8 +8,7 @@ Implementing Feed-forward Denoising Convolutional Neural Network See http://ieeexplore.ieee.org/document/7839189/ """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Drcn.py b/VSR/Backend/TF/Models/Drcn.py index 0cb58a4..8010b75 100644 --- a/VSR/Backend/TF/Models/Drcn.py +++ b/VSR/Backend/TF/Models/Drcn.py @@ -10,8 +10,8 @@ """ import numpy as np -import tensorflow as tf +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/Drrn.py b/VSR/Backend/TF/Models/Drrn.py index 2f05774..0499322 100644 --- a/VSR/Backend/TF/Models/Drrn.py +++ b/VSR/Backend/TF/Models/Drrn.py @@ -11,8 +11,7 @@ import logging -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/Drsr.py b/VSR/Backend/TF/Models/Drsr.py index 23c0412..0200f59 100644 --- a/VSR/Backend/TF/Models/Drsr.py +++ b/VSR/Backend/TF/Models/Drsr.py @@ -7,9 +7,9 @@ import logging import numpy as np -import tensorflow as tf from VSR.Util import Config +from .. import tf from ..Framework import Noise, Trainer from ..Framework.SuperResolution import SuperResolution from ..Util import summary_tensor_image diff --git a/VSR/Backend/TF/Models/Drsr_v2.py b/VSR/Backend/TF/Models/Drsr_v2.py index 7387c27..2d01f9a 100644 --- a/VSR/Backend/TF/Models/Drsr_v2.py +++ b/VSR/Backend/TF/Models/Drsr_v2.py @@ -3,13 +3,13 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 2 - 28 -from functools import partial import logging +from functools import partial import numpy as np -import tensorflow as tf from VSR.Util import Config, to_list +from .. import tf from ..Arch.Residual import cascade_rdn from ..Framework import Noise from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Duf.py b/VSR/Backend/TF/Models/Duf.py index 4277fa1..5688ef8 100644 --- a/VSR/Backend/TF/Models/Duf.py +++ b/VSR/Backend/TF/Models/Duf.py @@ -9,9 +9,9 @@ """ import numpy as np -import tensorflow as tf from VSR.Util import to_list +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import pixel_shift diff --git a/VSR/Backend/TF/Models/Edsr.py b/VSR/Backend/TF/Models/Edsr.py index 368608d..2adf7d1 100644 --- a/VSR/Backend/TF/Models/Edsr.py +++ b/VSR/Backend/TF/Models/Edsr.py @@ -9,8 +9,7 @@ See https://arxiv.org/abs/1707.02921 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Espcn.py b/VSR/Backend/TF/Models/Espcn.py index e2284de..059c0ee 100644 --- a/VSR/Backend/TF/Models/Espcn.py +++ b/VSR/Backend/TF/Models/Espcn.py @@ -8,9 +8,8 @@ Efficient Sub-Pixel Convolutional Neural Network Ref https://arxiv.org/abs/1609.05158 """ -import tensorflow as tf - from VSR.Util import to_list +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/FFDNet.py b/VSR/Backend/TF/Models/FFDNet.py index c1f35f3..ca468fc 100644 --- a/VSR/Backend/TF/Models/FFDNet.py +++ b/VSR/Backend/TF/Models/FFDNet.py @@ -3,8 +3,7 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/4/25 下午2:13 -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Gan.py b/VSR/Backend/TF/Models/Gan.py index 0a80d5c..c607a16 100644 --- a/VSR/Backend/TF/Models/Gan.py +++ b/VSR/Backend/TF/Models/Gan.py @@ -8,10 +8,10 @@ """ import numpy as np -import tensorflow as tf import tqdm from VSR.Util import Config, to_list +from .. import tf from ..Arch import Discriminator from ..Framework.GAN import ( gradient_penalty, inception_score, loss_bce_gan, diff --git a/VSR/Backend/TF/Models/Idn.py b/VSR/Backend/TF/Models/Idn.py index c3c08a5..1fed16e 100644 --- a/VSR/Backend/TF/Models/Idn.py +++ b/VSR/Backend/TF/Models/Idn.py @@ -9,8 +9,7 @@ See https://arxiv.org/abs/1803.09454 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/LapSrn.py b/VSR/Backend/TF/Models/LapSrn.py index ebbd1cd..0f35940 100644 --- a/VSR/Backend/TF/Models/LapSrn.py +++ b/VSR/Backend/TF/Models/LapSrn.py @@ -9,9 +9,9 @@ Ref http://vllab.ucmerced.edu/wlai24/LapSRN """ import numpy as np -import tensorflow as tf from VSR.Util import to_list +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/MemNet.py b/VSR/Backend/TF/Models/MemNet.py index 60cbef7..3ac1e6a 100644 --- a/VSR/Backend/TF/Models/MemNet.py +++ b/VSR/Backend/TF/Models/MemNet.py @@ -8,9 +8,8 @@ See https://arxiv.org/abs/1708.02209 """ -import tensorflow as tf - from VSR.Util import to_list +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/Msrn.py b/VSR/Backend/TF/Models/Msrn.py index 9d342eb..ad37b94 100644 --- a/VSR/Backend/TF/Models/Msrn.py +++ b/VSR/Backend/TF/Models/Msrn.py @@ -8,8 +8,7 @@ See http://openaccess.thecvf.com/content_ECCV_2018/papers/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.pdf """ -import tensorflow as tf - +from .. import tf from ..Arch.Residual import msrb from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Nlrn.py b/VSR/Backend/TF/Models/Nlrn.py index 659d39d..f31205d 100644 --- a/VSR/Backend/TF/Models/Nlrn.py +++ b/VSR/Backend/TF/Models/Nlrn.py @@ -10,8 +10,7 @@ import logging -import tensorflow as tf - +from .. import tf, tfc from ..Arch.Residual import non_local from ..Framework.SuperResolution import SuperResolution @@ -75,7 +74,7 @@ def build_loss(self): with tf.control_dependencies(update_ops): opt = tf.train.AdadeltaOptimizer(self.learning_rate) grad = opt.compute_gradients(mse) - grad_clip = tf.contrib.training.clip_gradient_norms( + grad_clip = tfc.training.clip_gradient_norms( grad, self.clip) op = opt.apply_gradients(grad_clip, self.global_steps) self.loss.append(op) diff --git a/VSR/Backend/TF/Models/Rcan.py b/VSR/Backend/TF/Models/Rcan.py index 06b35c1..946ad63 100644 --- a/VSR/Backend/TF/Models/Rcan.py +++ b/VSR/Backend/TF/Models/Rcan.py @@ -8,8 +8,7 @@ See https://arxiv.org/abs/1807.02758 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Rdn.py b/VSR/Backend/TF/Models/Rdn.py index 1cc3f56..9015d26 100644 --- a/VSR/Backend/TF/Models/Rdn.py +++ b/VSR/Backend/TF/Models/Rdn.py @@ -9,8 +9,7 @@ See https://arxiv.org/abs/1802.08797 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/SRDenseNet.py b/VSR/Backend/TF/Models/SRDenseNet.py index 0628651..24e96ee 100644 --- a/VSR/Backend/TF/Models/SRDenseNet.py +++ b/VSR/Backend/TF/Models/SRDenseNet.py @@ -8,8 +8,7 @@ See http://openaccess.thecvf.com/content_ICCV_2017/papers/Tong_Image_Super-Resolution_Using_ICCV_2017_paper.pdf """ -import tensorflow as tf - +from .. import tf from ..Arch import Dense from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/SRFeat.py b/VSR/Backend/TF/Models/SRFeat.py index a9ea0a3..4d90d17 100644 --- a/VSR/Backend/TF/Models/SRFeat.py +++ b/VSR/Backend/TF/Models/SRFeat.py @@ -7,8 +7,8 @@ Single Image Super-Resolution with Feature Discrimination (ECCV 2018) See http://openaccess.thecvf.com/content_ECCV_2018/papers/Seong-Jin_Park_SRFeat_Single_Image_ECCV_2018_paper.pdf """ -import tensorflow as tf +from .. import tf from ..Arch import Discriminator from ..Framework.GAN import loss_bce_gan from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/SrGan.py b/VSR/Backend/TF/Models/SrGan.py index 30fd1a4..9c062e5 100644 --- a/VSR/Backend/TF/Models/SrGan.py +++ b/VSR/Backend/TF/Models/SrGan.py @@ -8,8 +8,8 @@ SRGAN implementation (CVPR 2017) See https://arxiv.org/abs/1609.04802 """ -import tensorflow as tf +from .. import tf from ..Arch import Discriminator from ..Framework.GAN import loss_bce_gan from ..Framework.SuperResolution import SuperResolution diff --git a/VSR/Backend/TF/Models/Srcnn.py b/VSR/Backend/TF/Models/Srcnn.py index 5bad475..48088d9 100644 --- a/VSR/Backend/TF/Models/Srcnn.py +++ b/VSR/Backend/TF/Models/Srcnn.py @@ -8,9 +8,9 @@ SRCNN mainly for framework tests (ECCV 2014) Ref https://arxiv.org/abs/1501.00092 """ -import tensorflow as tf from VSR.Util import to_list +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/Vdsr.py b/VSR/Backend/TF/Models/Vdsr.py index 4b9c576..fe1b52f 100644 --- a/VSR/Backend/TF/Models/Vdsr.py +++ b/VSR/Backend/TF/Models/Vdsr.py @@ -9,8 +9,7 @@ See https://arxiv.org/abs/1511.04587 """ -import tensorflow as tf - +from .. import tf from ..Framework.SuperResolution import SuperResolution from ..Util import bicubic_rescale diff --git a/VSR/Backend/TF/Models/Vespcn.py b/VSR/Backend/TF/Models/Vespcn.py index 514a552..3f1e29e 100644 --- a/VSR/Backend/TF/Models/Vespcn.py +++ b/VSR/Backend/TF/Models/Vespcn.py @@ -8,11 +8,10 @@ See https://arxiv.org/abs/1611.05250 """ -import tensorflow as tf - +from .. import tf from ..Framework.Motion import viz_flow, warp from ..Framework.SuperResolution import SuperResolution -from ..Util import pixel_shift, pad_if_divide +from ..Util import pad_if_divide, pixel_shift class VESPCN(SuperResolution): diff --git a/VSR/Backend/TF/Util.py b/VSR/Backend/TF/Util.py index fa69bf8..dafdea6 100644 --- a/VSR/Backend/TF/Util.py +++ b/VSR/Backend/TF/Util.py @@ -1,5 +1,5 @@ """ -Copyright: Wenyi Tang 2017-2018 +Copyright: Wenyi Tang 2017-2020 Author: Wenyi Tang Email: wenyi.tang@intel.com Created Date: May 8th 2018 @@ -10,10 +10,9 @@ import logging -import tensorflow as tf - from VSR.Util import to_list from VSR.Util.Math import weights_downsample, weights_upsample +from . import tf LOG = logging.getLogger('VSR.TF.Util') @@ -91,8 +90,8 @@ def bicubic_rescale(img, scale): with tf.name_scope('Bicubic'): shape = tf.shape(img) scale = to_list(scale, 2) - shape_enlarge = tf.to_float(shape) * [1, *scale, 1] - shape_enlarge = tf.to_int32(shape_enlarge) + shape_enlarge = tf.cast(shape, dtype=tf.float32) * [1, *scale, 1] + shape_enlarge = tf.cast(shape_enlarge, dtype=tf.int32) return tf.image.resize_bicubic(img, shape_enlarge[1:3], False) diff --git a/VSR/Backend/TF/__init__.py b/VSR/Backend/TF/__init__.py new file mode 100644 index 0000000..e2be0f3 --- /dev/null +++ b/VSR/Backend/TF/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 30 + +import tensorflow as tf + +ver_major, ver_minor, _ = [int(s) for s in tf.__version__.split('.')] +if ver_major >= 2: + import tensorflow.compat.v1 as tf + + tf.disable_v2_behavior() +else: + tfc = tf.contrib + if ver_minor >= 15: + import tensorflow.compat.v1 as tf diff --git a/VSR/Backend/Torch/Framework/Environment.py b/VSR/Backend/Torch/Framework/Environment.py index 74cfce8..43350b6 100644 --- a/VSR/Backend/Torch/Framework/Environment.py +++ b/VSR/Backend/Torch/Framework/Environment.py @@ -9,7 +9,7 @@ import numpy as np import torch -LOG = logging.getLogger('VSR.Framework') +LOG = logging.getLogger('VSR.Framework.Torch') def _make_ckpt_name(name, step): @@ -45,15 +45,19 @@ def __init__(self, model, work_dir=None): self._saved = Path(work_dir) / 'save' self._logd = Path(work_dir) / 'log' self._restored = False + self.last_epoch = 0 def _startup(self): if isinstance(self._saved, Path): self._saved.mkdir(parents=True, exist_ok=True) if isinstance(self._logd, Path): self._logd.mkdir(parents=True, exist_ok=True) - if LOG.isEnabledFor(logging.DEBUG): - hdl = logging.FileHandler(self._logd / 'training.txt') - LOG.addHandler(hdl) + _logger = logging.getLogger('VSR') + if _logger.isEnabledFor(logging.DEBUG): + fd = logging.FileHandler(self._logd / 'vsr_debug.log', encoding='utf-8') + fd.setFormatter( + logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")) + _logger.addHandler(fd) def _close(self): """TODO anything to close?""" @@ -125,7 +129,7 @@ def _save_model(self, step): def _restore(self, epoch=None, map_location=None): # restore graph - if self._restored: + if self._restored or self.model.loaded: return self.last_epoch self.last_epoch = self._restore_model(epoch, map_location=map_location) self._restored = True diff --git a/VSR/Backend/Torch/Framework/Trainer.py b/VSR/Backend/Torch/Framework/Trainer.py index 7d70dc0..14b8286 100644 --- a/VSR/Backend/Torch/Framework/Trainer.py +++ b/VSR/Backend/Torch/Framework/Trainer.py @@ -4,46 +4,17 @@ # Update: 2020 - 2 - 7 import logging -import time import numpy as np import torch import tqdm from VSR.Util.Config import Config +from VSR.Util.Ensemble import Ensembler from .Environment import Env from .Summary import Summarizer -LOG = logging.getLogger('VSR.Framework') - - -def _ensemble_expand(feature): - r0 = feature - r1 = np.rot90(feature, 1, axes=[-3, -2]) - r2 = np.rot90(feature, 2, axes=[-3, -2]) - r3 = np.rot90(feature, 3, axes=[-3, -2]) - r4 = np.flip(feature, axis=-2) - r5 = np.rot90(r4, 1, axes=[-3, -2]) - r6 = np.rot90(r4, 2, axes=[-3, -2]) - r7 = np.rot90(r4, 3, axes=[-3, -2]) - return r0, r1, r2, r3, r4, r5, r6, r7 - - -def _ensemble_reduce_mean(outputs): - results = [] - for i in outputs: - outputs_ensemble = [ - i[0], - np.rot90(i[1], 3, axes=[-3, -2]), - np.rot90(i[2], 2, axes=[-3, -2]), - np.rot90(i[3], 1, axes=[-3, -2]), - np.flip(i[4], axis=-2), - np.flip(np.rot90(i[5], 3, axes=[-3, -2]), axis=-2), - np.flip(np.rot90(i[6], 2, axes=[-3, -2]), axis=-2), - np.flip(np.rot90(i[7], 1, axes=[-3, -2]), axis=-2), - ] - results.append(np.concatenate(outputs_ensemble).mean(axis=0, keepdims=True)) - return results +LOG = logging.getLogger('VSR.Framework.Torch') def to_tensor(x, cuda=False): @@ -76,6 +47,7 @@ def query_config(self, config, **kwargs): self.v.ensemble = config.ensemble self.v.cuda = config.cuda self.v.map_location = 'cuda:0' if config.cuda and torch.cuda.is_available() else 'cpu' + self.v.caching = config.caching return self.v def fit_init(self) -> bool: @@ -85,7 +57,7 @@ def fit_init(self) -> bool: LOG.info(f'Found pre-trained epoch {v.epoch}>=target {v.epochs},' ' quit fitting.') return False - LOG.info('Fitting: {}'.format(self.model.name.upper())) + LOG.info(f'Fitting: {self.model.name.upper()}') if self._logd: v.writer = Summarizer(str(self._logd), self.model.name) return True @@ -107,14 +79,13 @@ def fit(self, loaders, config, **kwargs): train_iter = v.train_loader.make_one_shot_iterator(v.batch_shape, v.steps, shuffle=True, - memory_limit=mem) + memory_limit=mem, + caching=v.caching) v.train_loader.prefetch(shuffle=True, memory_usage=mem) - date = time.strftime('%Y-%m-%d %T', time.localtime()) v.avg_meas = {} if v.lr_schedule and callable(v.lr_schedule): v.lr = v.lr_schedule(steps=v.epoch) - print('| {} | Epoch: {}/{} | LR: {:.2g} |'.format( - date, v.epoch, v.epochs, v.lr)) + LOG.info(f"| Epoch: {v.epoch}/{v.epochs} | LR: {v.lr:.2g} |") with tqdm.tqdm(train_iter, unit='batch', ascii=True) as r: self.model.to_train() for items in r: @@ -124,7 +95,7 @@ def fit(self, loaders, config, **kwargs): _v = np.mean(_v) if isinstance(self.v.writer, Summarizer): v.writer.scalar(_k, _v, step=v.epoch, collection='train') - print('| Epoch average {} = {:.6f} |'.format(_k, _v)) + LOG.info(f"| Epoch average {_k} = {_v:.6f} |") if v.epoch % v.validate_every_n_epoch == 0 and v.val_loader: # Hard-coded memory limitation for validating self.benchmark(v.val_loader, v, memory_limit='1GB') @@ -156,17 +127,20 @@ def benchmark(self, loader, config, **kwargs): v.loader = loader it = v.loader.make_one_shot_iterator(v.batch_shape, v.val_steps, shuffle=not v.traced_val, - memory_limit=v.memory_limit) + memory_limit=v.memory_limit, + caching=v.caching) self.model.to_eval() for items in tqdm.tqdm(it, 'Test', ascii=True): with torch.no_grad(): self.fn_benchmark_each_step(items) + log_message = str() for _k, _v in v.mean_metrics.items(): _v = np.mean(_v) if isinstance(self.v.writer, Summarizer): v.writer.scalar(_k, _v, step=v.epoch, collection='eval') - print('{}: {:.6f}'.format(_k, _v), end=', ') - print('') + log_message += f"{_k}: {_v:.6f}, " + log_message = log_message[:-2] + "." + LOG.info(log_message) def fn_benchmark_each_step(self, pack): v = self.v @@ -181,7 +155,8 @@ def fn_benchmark_each_step(self, pack): outputs = [from_tensor(x) for x in outputs] for fn in v.inference_results_hooks: outputs = fn(outputs, names=pack['name']) - if outputs is None: break + if outputs is None: + break def infer(self, loader, config, **kwargs): """Infer SR images. @@ -195,11 +170,9 @@ def infer(self, loader, config, **kwargs): self._restore(config.epoch, v.map_location) it = loader.make_one_shot_iterator([1, -1, -1, -1], -1) if hasattr(it, '__len__'): - if len(it): - LOG.info('Inferring {} at epoch {}'.format( - self.model.name, self.last_epoch)) - else: + if len(it) == 0: return + LOG.info(f"Inferring {self.model.name} at epoch {self.last_epoch}") # use original images in inferring self.model.to_eval() for items in tqdm.tqdm(it, 'Infer', ascii=True): @@ -211,7 +184,7 @@ def fn_infer_each_step(self, pack): with torch.set_grad_enabled(False): if v.ensemble: # add self-ensemble boosting metric score - feature_ensemble = _ensemble_expand(pack['lr']) + feature_ensemble = Ensembler.expand(pack['lr']) outputs_ensemble = [] for f in feature_ensemble: f = to_tensor(f, v.cuda) @@ -221,11 +194,12 @@ def fn_infer_each_step(self, pack): outputs = [] for i in range(len(outputs_ensemble[0])): outputs.append([j[i] for j in outputs_ensemble]) - outputs = _ensemble_reduce_mean(outputs) + outputs = Ensembler.merge(outputs) else: feature = to_tensor(pack['lr'], v.cuda) outputs, _ = self.model.eval([feature]) outputs = [from_tensor(x) for x in outputs] for fn in v.inference_results_hooks: outputs = fn(outputs, names=pack['name']) - if outputs is None: break + if outputs is None: + break diff --git a/VSR/Backend/Torch/Models/Arch.py b/VSR/Backend/Torch/Models/Arch.py deleted file mode 100644 index aaa3f81..0000000 --- a/VSR/Backend/Torch/Models/Arch.py +++ /dev/null @@ -1,393 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午5:10 - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from VSR.Util.Utility import to_list - - -class EasyConv2d(nn.Module): - def __init__(self, in_channels, out_channels, kernel_size, - stride=1, padding='same', dilation=1, groups=1, - activation=None, use_bias=True, use_bn=False, use_sn=False): - super(EasyConv2d, self).__init__() - assert padding.lower() in ('same', 'valid') - if padding == 'same': - padding_ = (kernel_size - 1) // 2 - else: - padding_ = 0 - net = [nn.Conv2d(in_channels, out_channels, kernel_size, stride, - padding_, dilation, groups, use_bias)] - if use_sn: - net[0] = nn.utils.spectral_norm(net[0]) - if use_bn: - net += [nn.BatchNorm2d(out_channels)] - if activation: - net += [Activation(activation, in_place=True)] - self.body = nn.Sequential(*net) - - def forward(self, x): - return self.body(x) - - def initialize_(self, kernel, bias=None): - """initialize the convolutional weights from external sources - - Args: - kernel: kernel weight. Shape=[OUT, IN, K, K] - bias: bias weight. Shape=[OUT] - """ - - dtype = self.body[0].weight.dtype - device = self.body[0].weight.device - kernel = torch.tensor(kernel, dtype=dtype, device=device, - requires_grad=True) - assert kernel.shape == self.body[0].weight.shape, "Wrong kernel shape!" - if bias is not None: - bias = torch.tensor(bias, dtype=dtype, device=device, requires_grad=True) - assert bias.shape == self.body[0].bias.shape, "Wrong bias shape!" - self.body[0].weight.data.copy_(kernel) - self.body[0].bias.data.copy_(bias) - - -class RB(nn.Module): - def __init__(self, channels, kernel_size, activation=None, use_bias=True, - use_bn=False, use_sn=False, act_first=None): - super(RB, self).__init__() - in_c, out_c = to_list(channels, 2) - conv1 = nn.Conv2d( - in_c, out_c, kernel_size, 1, kernel_size // 2, bias=use_bias) - conv2 = nn.Conv2d( - out_c, out_c, kernel_size, 1, kernel_size // 2, bias=use_bias) - if use_sn: - conv1 = nn.utils.spectral_norm(conv1) - conv2 = nn.utils.spectral_norm(conv2) - net = [conv1, Activation(activation, in_place=True), conv2] - if use_bn: - net.insert(1, nn.BatchNorm2d(out_c)) - if act_first: - net = [nn.BatchNorm2d(in_c), Activation(activation, in_place=True)] + \ - net - else: - net.append(nn.BatchNorm2d(out_c)) - self.body = nn.Sequential(*net) - if in_c != out_c: - self.shortcut = nn.Conv2d(in_c, out_c, 1) - - def forward(self, x): - out = self.body(x) - if hasattr(self, 'shortcut'): - sc = self.shortcut(x) - return out + sc - return out + x - - -class Rdb(nn.Module): - def __init__(self, channels, depth=3, scaling=1.0, name='Rdb', **kwargs): - super(Rdb, self).__init__() - self.name = name - self.depth = depth - self.scaling = scaling - in_c, out_c = to_list(channels, 2) - ks = kwargs.get('kernel_size', 3) - stride = kwargs.get('stride', 1) - padding = kwargs.get('padding', ks // 2) - dilation = kwargs.get('dilation', 1) - group = kwargs.get('group', 1) - bias = kwargs.get('bias', True) - act = kwargs.get('activation', 'relu') - for i in range(depth): - conv = nn.Conv2d( - in_c + out_c * i, out_c, ks, stride, padding, dilation, group, bias) - if i < depth - 1: # no activation after last layer - conv = nn.Sequential(conv, Activation(act)) - setattr(self, f'conv_{i}', conv) - - def forward(self, inputs): - fl = [inputs] - for i in range(self.depth): - conv = getattr(self, f'conv_{i}') - fl.append(conv(torch.cat(fl, dim=1))) - return fl[-1] * self.scaling + inputs - - def extra_repr(self): - return f"{self.name}: depth={self.depth}, scaling={self.scaling}" - - -class Rcab(nn.Module): - def __init__(self, channels, ratio=16, name='RCAB', **kwargs): - super(Rcab, self).__init__() - self.name = name - self.ratio = ratio - in_c, out_c = to_list(channels, 2) - ks = kwargs.get('kernel_size', 3) - padding = kwargs.get('padding', ks // 2) - group = kwargs.get('group', 1) - bias = kwargs.get('bias', True) - self.c1 = nn.Sequential( - nn.Conv2d(in_c, out_c, ks, 1, padding, 1, group, bias), - nn.ReLU(True)) - self.c2 = nn.Conv2d(out_c, out_c, ks, 1, padding, 1, group, bias) - self.c3 = nn.Sequential( - nn.Conv2d(out_c, out_c // ratio, 1, groups=group, bias=bias), - nn.ReLU(True)) - self.c4 = nn.Sequential( - nn.Conv2d(out_c // ratio, in_c, 1, groups=group, bias=bias), - nn.Sigmoid()) - self.pooling = nn.AdaptiveAvgPool2d(1) - - def forward(self, inputs): - x = self.c1(inputs) - y = self.c2(x) - x = self.pooling(y) - x = self.c3(x) - x = self.c4(x) - y = x * y - return inputs + y - - def extra_repr(self): - return f"{self.name}: ratio={self.ratio}" - - -class CascadeRdn(nn.Module): - def __init__(self, channels, depth=3, use_ca=False, name='CascadeRdn', - **kwargs): - super(CascadeRdn, self).__init__() - self.name = name - self.depth = to_list(depth, 2) - self.ca = use_ca - in_c, out_c = to_list(channels, 2) - for i in range(self.depth[0]): - setattr(self, f'conv11_{i}', nn.Conv2d(in_c + out_c * (i + 1), out_c, 1)) - setattr(self, f'rdn_{i}', Rdb(channels, self.depth[1], **kwargs)) - if use_ca: - setattr(self, f'rcab_{i}', Rcab(channels)) - - def forward(self, inputs): - fl = [inputs] - x = inputs - for i in range(self.depth[0]): - rdn = getattr(self, f'rdn_{i}') - x = rdn(x) - if self.ca: - rcab = getattr(self, f'rcab_{i}') - x = rcab(x) - fl.append(x) - c11 = getattr(self, f'conv11_{i}') - x = c11(torch.cat(fl, dim=1)) - - return x - - def extra_repr(self): - return f"{self.name}: depth={self.depth}, ca={self.ca}" - - -class Activation(nn.Module): - def __init__(self, name, *args, **kwargs): - super(Activation, self).__init__() - if name is None: - self.f = lambda t: t - self.name = name.lower() - in_place = kwargs.get('in_place', True) - if self.name == 'relu': - self.f = nn.ReLU(in_place) - elif self.name == 'prelu': - self.f = nn.PReLU() - elif self.name in ('lrelu', 'leaky', 'leakyrelu'): - self.f = nn.LeakyReLU(*args, inplace=in_place) - elif self.name == 'tanh': - self.f = nn.Tanh() - elif self.name == 'sigmoid': - self.f = nn.Sigmoid() - - def forward(self, x): - return self.f(x) - - -class _UpsampleNearest(nn.Module): - def __init__(self, scale): - super(_UpsampleNearest, self).__init__() - self.scale = scale - - def forward(self, x, scale=None): - scale = scale or self.scale - return F.interpolate(x, scale_factor=scale) - - -class _UpsampleLinear(nn.Module): - def __init__(self, scale): - super(_UpsampleLinear, self).__init__() - self._mode = ('linear', 'bilinear', 'trilinear') - self.scale = scale - - def forward(self, x, scale=None): - scale = scale or self.scale - mode = self._mode[x.dim() - 3] - return F.interpolate(x, scale_factor=scale, mode=mode, align_corners=False) - - -class Upsample(nn.Module): - def __init__(self, channel, scale, method='ps', name='Upsample', **kwargs): - super(Upsample, self).__init__() - self.name = name - self.channel = channel - self.scale = scale - self.method = method.lower() - self.kernel_size = kwargs.get('kernel_size', 3) - - _allowed_methods = ('ps', 'nearest', 'deconv', 'linear') - assert self.method in _allowed_methods - act = kwargs.get('activation') - - samplers = [] - while scale > 1: - if scale % 2 == 1 or scale == 2: - samplers.append(self.upsampler(self.method, scale)) - break - else: - samplers.append(self.upsampler(self.method, 2, act)) - scale //= 2 - self.body = nn.Sequential(*samplers) - - def upsampler(self, method, scale, activation=None): - body = [] - k = self.kernel_size - if method == 'ps': - p = k // 2 # padding - s = 1 # strides - body = [nn.Conv2d(self.channel, self.channel * scale * scale, k, s, p), - nn.PixelShuffle(scale)] - if activation: - body.insert(1, Activation(activation)) - if method == 'deconv': - q = k % 2 # output padding - p = (k + q) // 2 - 1 # padding - s = scale # strides - body = [nn.ConvTranspose2d(self.channel, self.channel, k, s, p, q)] - if activation: - body.insert(1, Activation(activation)) - if method == 'nearest': - body = [_UpsampleNearest(scale), - EasyConv2d(self.channel, self.channel, k, activation=activation)] - if method == 'linear': - body = [_UpsampleLinear(scale), - EasyConv2d(self.channel, self.channel, k, activation=activation)] - return nn.Sequential(*body) - - def forward(self, inputs): - return self.body(inputs) - - def extra_repr(self): - return f"{self.name}: scale={self.scale}" - - -class SpaceToDim(nn.Module): - def __init__(self, scale_factor, dims=(-2, -1), dim=0): - super(SpaceToDim, self).__init__() - self.scale_factor = scale_factor - self.dims = dims - self.dim = dim - - def forward(self, x): - _shape = list(x.shape) - shape = _shape.copy() - dims = [x.dim() + self.dims[0] if self.dims[0] < 0 else self.dims[0], - x.dim() + self.dims[1] if self.dims[1] < 0 else self.dims[1]] - dims = [max(abs(dims[0]), abs(dims[1])), - min(abs(dims[0]), abs(dims[1]))] - if self.dim in dims: - raise RuntimeError("Integrate dimension can't be space dimension!") - shape[dims[0]] //= self.scale_factor - shape[dims[1]] //= self.scale_factor - shape.insert(dims[0] + 1, self.scale_factor) - shape.insert(dims[1] + 1, self.scale_factor) - dim = self.dim if self.dim < dims[1] else self.dim + 1 - dim = dim if dim <= dims[0] else dim + 1 - x = x.reshape(*shape) - perm = [dim, dims[1] + 1, dims[0] + 2] - perm = [i for i in range(min(perm))] + perm - perm.extend((i for i in range(x.dim()) if i not in perm)) - x = x.permute(*perm) - shape = _shape - shape[self.dim] *= self.scale_factor ** 2 - shape[self.dims[0]] //= self.scale_factor - shape[self.dims[1]] //= self.scale_factor - return x.reshape(*shape) - - def extra_repr(self): - return f'scale_factor={self.scale_factor}' - - -class SpaceToDepth(nn.Module): - def __init__(self, block_size): - super(SpaceToDepth, self).__init__() - self.body = SpaceToDim(block_size, dim=1) - - def forward(self, x): - return self.body(x) - - -class SpaceToBatch(nn.Module): - def __init__(self, block_size): - super(SpaceToBatch, self).__init__() - self.body = SpaceToDim(block_size, dim=0) - - def forward(self, x): - return self.body(x) - - -class CBAM(nn.Module): - """Convolutional Block Attention Module (ECCV 18) - - CA: channel attention module - - SA: spatial attention module - - Args: - channels: input channel of tensors - channel_reduction: reduction ratio in `CA` - spatial_first: put SA ahead of CA (default: CA->SA) - """ - - class CA(nn.Module): - def __init__(self, channels, ratio=16): - super(CBAM.CA, self).__init__() - self.max_pool = nn.AdaptiveMaxPool2d(1) - self.avg_pool = nn.AdaptiveAvgPool2d(1) - self.mlp = nn.Sequential( - nn.Conv2d(channels, channels // ratio, 1), - nn.ReLU(), - nn.Conv2d(channels // ratio, channels, 1)) - - def forward(self, x): - maxpool = self.max_pool(x) - avgpool = self.avg_pool(x) - att = F.sigmoid(self.mlp(maxpool) + self.mlp(avgpool)) - return att * x - - class SA(nn.Module): - def __init__(self, kernel_size=7): - super(CBAM.SA, self).__init__() - self.conv = nn.Conv2d(2, 1, kernel_size, 1, kernel_size // 2) - - def forward(self, x): - max_c_pool = x.max(dim=1, keepdim=True) - avg_c_pool = x.mean(dim=1, keepdim=True) - y = torch.cat([max_c_pool, avg_c_pool], dim=1) - att = F.sigmoid(self.conv(y)) - return att * x - - def __init__(self, channels, channel_reduction=16, spatial_first=None): - super(CBAM, self).__init__() - self.channel_attention = CBAM.CA(channels, ratio=channel_reduction) - self.spatial_attention = CBAM.SA(7) - self.spatial_first = spatial_first - - def forward(self, inputs): - if self.spatial_first: - x = self.spatial_attention(inputs) - return self.channel_attention(x) - else: - x = self.channel_attention(inputs) - return self.spatial_attention(x) diff --git a/VSR/Backend/Torch/Models/Bicubic.py b/VSR/Backend/Torch/Models/Bicubic.py new file mode 100644 index 0000000..c1045f6 --- /dev/null +++ b/VSR/Backend/Torch/Models/Bicubic.py @@ -0,0 +1,53 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 17 + +# Non-trainable bicubic, for performance benchmarking and debugging + +import torch +import torch.nn as nn +import torchvision as tv + +from .Model import SuperResolution +from ..Util.Metrics import psnr + + +class Cubic(nn.Module): + def __init__(self, scale): + super(Cubic, self).__init__() + self.to_pil = tv.transforms.ToPILImage() + self.to_tensor = tv.transforms.ToTensor() + self.scale = scale + + def forward(self, x): + if self.scale == 1: + return x + ret = [] + for img in [i[0] for i in x.split(1, dim=0)]: + img = self.to_pil(img.cpu()) + w = img.width + h = img.height + img = img.resize([w * self.scale, h * self.scale], 3) + img = self.to_tensor(img) + ret.append(img) + return torch.stack(ret).to(x.device) + + +class BICUBIC(SuperResolution): + def __init__(self, scale=4, channel=3, **kwargs): + super(BICUBIC, self).__init__(scale, channel, **kwargs) + self.cubic = Cubic(scale) + self.cri = nn.L1Loss() + + def train(self, inputs, labels, learning_rate=None): + sr = self.cubic(inputs[0]) + loss = self.cri(sr, labels[0]) + return {'l1': loss.detach().cpu().numpy()} + + def eval(self, inputs, labels=None, **kwargs): + metrics = {} + sr = self.cubic(inputs[0]).cpu().detach() + if labels is not None: + metrics['psnr'] = psnr(sr.numpy(), labels[0].cpu().numpy()) + return [sr.numpy()], metrics diff --git a/VSR/Backend/Torch/Models/Carn.py b/VSR/Backend/Torch/Models/Carn.py index cb9b867..e1fc7f0 100644 --- a/VSR/Backend/Torch/Models/Carn.py +++ b/VSR/Backend/Torch/Models/Carn.py @@ -3,52 +3,144 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 13 +import logging + import torch +import torch.nn as nn import torch.nn.functional as F -from .Model import SuperResolution -from .carn import carn, carn_m -from ..Util import Metrics +from .Ops.Blocks import EasyConv2d, MeanShift, RB +from .Ops.Scale import MultiscaleUpsample, Upsample +from .Optim.SISR import L1Optimizer +_logger = logging.getLogger("VSR.CARN") +_logger.info("LICENSE: CARN is implemented by Namhyuk Ahn. " + "@nmhkahn https://github.com/nmhkahn/CARN-pytorch") -class CARN(SuperResolution): - def __init__(self, scale, channel, **kwargs): - super(CARN, self).__init__(scale, channel, **kwargs) - group = kwargs.get('group', 1) - ms = kwargs.get('multi_scale', 0) - self.clip = kwargs.get('clip', 10) - if group > 1: - self.carn = carn_m.Net(group=group, scale=scale, multi_scale=ms) + +class EResidualBlock(nn.Module): + def __init__(self, in_channels, out_channels, group): + super(EResidualBlock, self).__init__() + + self.body = nn.Sequential( + nn.Conv2d(in_channels, out_channels, 3, 1, 1, groups=group), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 3, 1, 1, groups=group), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 1, 1, 0), + ) + + def forward(self, x): + out = self.body(x) + return out + x + + +class ResidualBlock(nn.Module): + def __init__(self, + in_channels, out_channels): + super(ResidualBlock, self).__init__() + + self.body = nn.Sequential( + nn.Conv2d(in_channels, out_channels, 3, 1, 1), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 3, 1, 1), + ) + + def forward(self, x): + out = self.body(x) + out = F.relu(out + x) + return out + + +class Block(nn.Module): + def __init__(self, in_channels, out_channels, group=1): + """ CARN cascading residual block + """ + super(Block, self).__init__() + if group == 1: + self.b1 = RB(in_channels, out_channels, activation='relu') + self.b2 = RB(out_channels, out_channels, activation='relu') + self.b3 = RB(out_channels, out_channels, activation='relu') + elif group > 1: + self.b1 = EResidualBlock(64, 64, group=group) + self.b2 = self.b3 = self.b1 + self.c1 = EasyConv2d(in_channels + out_channels, out_channels, 1, + activation='relu') + self.c2 = EasyConv2d(in_channels + out_channels * 2, out_channels, 1, + activation='relu') + self.c3 = EasyConv2d(in_channels + out_channels * 3, out_channels, 1, + activation='relu') + + def forward(self, x): + c0 = o0 = x + + b1 = F.relu(self.b1(o0)) + c1 = torch.cat([c0, b1], dim=1) + o1 = self.c1(c1) + + b2 = F.relu(self.b2(o1)) + c2 = torch.cat([c1, b2], dim=1) + o2 = self.c2(c2) + + b3 = F.relu(self.b3(o2)) + c3 = torch.cat([c2, b3], dim=1) + o3 = self.c3(c3) + + return o3 + + +class Net(nn.Module): + def __init__(self, scale, multi_scale=None, group=1): + super(Net, self).__init__() + + self.sub_mean = MeanShift((0.4488, 0.4371, 0.4040), sub=True) + self.add_mean = MeanShift((0.4488, 0.4371, 0.4040), sub=False) + + self.entry = nn.Conv2d(3, 64, 3, 1, 1) + + self.b1 = Block(64, 64, group=group) + self.b2 = Block(64, 64, group=group) + self.b3 = Block(64, 64, group=group) + self.c1 = EasyConv2d(64 * 2, 64, 1, activation='relu') + self.c2 = EasyConv2d(64 * 3, 64, 1, activation='relu') + self.c3 = EasyConv2d(64 * 4, 64, 1, activation='relu') + + if multi_scale: + self.upsample = MultiscaleUpsample(64, scales=(2, 3, 4), group=group, + activation='relu') else: - self.carn = carn.Net(scale=scale, multi_scale=ms) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - sr = self.carn(inputs[0], self.scale) - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - torch.nn.utils.clip_grad_norm_(self.carn.parameters(), self.clip) - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.carn(inputs[0], self.scale).cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics - - def export(self, export_dir): - """An example of how to export ONNX format""" - - # ONNX needs input placeholder to export model! - # Sounds stupid to set a 48x48 inputs. - - device = list(self.carn.parameters())[0].device - inputs = torch.randn(1, self.channel, 144, 128, device=device) - scale = torch.tensor(self.scale, device=device) - torch.onnx.export(self.carn, (inputs, scale), export_dir / 'carn.onnx') + self.upsample = Upsample(64, scale=scale, group=group, activation='relu') + self.exit = nn.Conv2d(64, 3, 3, 1, 1) + + def forward(self, x, scale=None): + x = self.sub_mean(x) + x = self.entry(x) + c0 = o0 = x + + b1 = self.b1(o0) + c1 = torch.cat([c0, b1], dim=1) + o1 = self.c1(c1) + + b2 = self.b2(o1) + c2 = torch.cat([c1, b2], dim=1) + o2 = self.c2(c2) + + b3 = self.b3(o2) + c3 = torch.cat([c2, b3], dim=1) + o3 = self.c3(c3) + + out = self.upsample(o3, scale=scale) + + out = self.exit(out) + out = self.add_mean(out) + + return out + + +class CARN(L1Optimizer): + def __init__(self, scale, channel, group=1, ms=0, **kwargs): + self.carn = Net(group=group, scale=scale, multi_scale=ms) + super(CARN, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + return self.carn(x) diff --git a/VSR/Backend/Torch/Models/Classic.py b/VSR/Backend/Torch/Models/Classic.py index ebbb102..477a014 100644 --- a/VSR/Backend/Torch/Models/Classic.py +++ b/VSR/Backend/Torch/Models/Classic.py @@ -5,14 +5,10 @@ import torch import torch.nn as nn -import torch.nn.functional as F -from .Arch import EasyConv2d, RB -from .Loss import VggFeatureLoss -from .Model import SuperResolution -from ..Util import Metrics +from .Optim.SISR import PerceptualOptimizer +from .Ops.Blocks import EasyConv2d, RB from ..Util.Utility import upsample -from ..Framework.Summary import get_writer class Espcn(nn.Module): @@ -34,9 +30,9 @@ class Srcnn(nn.Module): def __init__(self, channel, filters=(9, 5, 5)): super(Srcnn, self).__init__() self.net = nn.Sequential( - EasyConv2d(channel, 64, filters[0], activation='relu'), - EasyConv2d(64, 32, filters[1], activation='relu'), - EasyConv2d(32, channel, filters[2], activation=None)) + EasyConv2d(channel, 64, filters[0], activation='relu'), + EasyConv2d(64, 32, filters[1], activation='relu'), + EasyConv2d(32, channel, filters[2], activation=None)) def forward(self, x): return self.net(x) @@ -74,11 +70,11 @@ def __init__(self, scale, channel, n_recur, filters): super(Drcn, self).__init__() self.entry = nn.Sequential( - EasyConv2d(channel, filters, 3, activation='relu'), - EasyConv2d(filters, filters, 3, activation='relu')) + EasyConv2d(channel, filters, 3, activation='relu'), + EasyConv2d(filters, filters, 3, activation='relu')) self.exit = nn.Sequential( - EasyConv2d(filters, filters, 3, activation='relu'), - EasyConv2d(filters, channel, 3)) + EasyConv2d(filters, filters, 3, activation='relu'), + EasyConv2d(filters, channel, 3)) self.conv = EasyConv2d(filters, filters, 3, activation='relu') self.output_weights = Parameter(torch.empty(n_recur + 1)) torch.nn.init.uniform_(self.output_weights, 0, 1) @@ -105,7 +101,7 @@ def __init__(self, channel, n_ru, n_rb, filters): setattr(self, f'entry{i}', EasyConv2d(filters, filters, 3, activation='relu')) self.n_rb = n_rb - self.rb = RB(filters, 3, activation='relu') + self.rb = RB(filters, kernel_size=3, activation='relu') self.n_ru = n_ru self.exit = EasyConv2d(filters, channel, 3) @@ -119,115 +115,10 @@ def forward(self, x): return self.exit(x) -class PerceptualOptimizer(SuperResolution): - def __init__(self, scale, channel, image_weight=1, feature_weight=0, - **kwargs): - super(PerceptualOptimizer, self).__init__(scale, channel, **kwargs) - if feature_weight > 0: - # tricks: do not save weights of vgg - self.feature = [VggFeatureLoss(['block3_conv4'], True)] - self.w = [image_weight, feature_weight] - self.clip = kwargs.get('clip') - self.opt_config = kwargs.get('opt') - - def get_opt(self, params, lr): - if self.opt_config is None: - return torch.optim.Adam(params, lr=lr) - if self.opt_config.get('name') == 'Adadelta': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.Adadelta(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'Adagrad': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.Adagrad(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'Adam': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.Adam(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'SparseAdam': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.SparseAdam(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'Adamax': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.Adamax(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'ASGD': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.ASGD(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'SGD': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.SGD(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'LBFGS': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.LBFGS(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'Rprop': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.Rprop(params, lr=lr, **kwargs) - elif self.opt_config.get('name') == 'RMSprop': - kwargs = self.opt_config - kwargs.pop('name') - return torch.optim.RMSprop(params, lr=lr, **kwargs) - - def cuda(self): - super(PerceptualOptimizer, self).cuda() - if self.w[1] > 0: - self.feature[0].cuda() - - def train(self, inputs, labels, learning_rate=None): - sr = self.fn(inputs[0]) - image_loss = F.mse_loss(sr, labels[0]) - loss = image_loss * self.w[0] - if self.w[1] > 0: - self.feature[0].eval() - # sr = self.fn(inputs[0]) - feat_fake = self.feature[0](sr)[0] - feat_real = self.feature[0](labels[0])[0] - feature_loss = F.mse_loss(feat_fake, feat_real) - loss += feature_loss * self.w[1] - opt = list(self.opts.values())[0] - if learning_rate: - for param_group in opt.param_groups: - param_group["lr"] = learning_rate - opt.zero_grad() - loss.backward() - if self.clip: - clip = self.clip / learning_rate - nn.utils.clip_grad_norm_(self.trainable_variables(), clip) - opt.step() - return { - 'loss': loss.detach().cpu().numpy(), - 'image': image_loss.detach().cpu().numpy(), - } - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.fn(inputs[0]).detach().cpu() - bi = upsample(inputs[0], self.scale).detach().cpu() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - writer = get_writer(self.name) - if writer is not None: - step = kwargs.get('epoch') - writer.image('sr', sr.clamp(0, 1), max=1, step=step) - writer.image('bicubic', bi.clamp(0, 1), max=1, step=step) - writer.image('gt', labels[0], max=1, step=step) - return [sr.numpy()], metrics - - def fn(self, tensor): - raise NotImplementedError - - class ESPCN(PerceptualOptimizer): def __init__(self, scale, channel, **kwargs): - super(ESPCN, self).__init__(scale, channel, **kwargs) self.espcn = Espcn(channel, scale) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) + super(ESPCN, self).__init__(scale, channel, **kwargs) def fn(self, tensor): return self.espcn(tensor * 2 - 1) / 2 + 0.5 @@ -235,10 +126,9 @@ def fn(self, tensor): class SRCNN(PerceptualOptimizer): def __init__(self, scale, channel, **kwargs): - super(SRCNN, self).__init__(scale, channel, **kwargs) filters = kwargs.get('filters', (9, 5, 5)) self.srcnn = Srcnn(channel, filters) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) + super(SRCNN, self).__init__(scale, channel, **kwargs) def fn(self, tensor): x = upsample(tensor, self.scale) @@ -247,10 +137,9 @@ def fn(self, tensor): class VDSR(PerceptualOptimizer): def __init__(self, scale, channel, **kwargs): - super(VDSR, self).__init__(scale, channel, **kwargs) layers = kwargs.get('layers', 20) self.vdsr = Vdsr(channel, layers) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) + super(VDSR, self).__init__(scale, channel, **kwargs) def fn(self, tensor): x = upsample(tensor, self.scale) @@ -258,14 +147,13 @@ def fn(self, tensor): class DNCNN(PerceptualOptimizer): - def __init__(self, channel, scale, noise, **kwargs): - super(DNCNN, self).__init__(1, channel, **kwargs) + def __init__(self, channel, noise, **kwargs): layers = kwargs.get('layers', 15) bn = kwargs.get('bn', True) self.dncnn = DnCnn(channel, layers, bn) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) self.noise = noise / 255 self.norm = torch.distributions.normal.Normal(0, self.noise) + super(DNCNN, self).__init__(1, channel, **kwargs) def fn(self, tensor): if self.noise > 0: @@ -277,9 +165,8 @@ def fn(self, tensor): class DRCN(PerceptualOptimizer): def __init__(self, scale, channel, n_recur, **kwargs): - super(DRCN, self).__init__(scale, channel, **kwargs) self.drcn = Drcn(scale, channel, n_recur, 128) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) + super(DRCN, self).__init__(scale, channel, **kwargs) def fn(self, tensor): return self.drcn(tensor) @@ -287,9 +174,8 @@ def fn(self, tensor): class DRRN(PerceptualOptimizer): def __init__(self, scale, channel, n_rb, n_ru, **kwargs): - super(DRRN, self).__init__(scale, channel, **kwargs) self.drrn = Drrn(channel, n_ru, n_rb, 128) - self.opt = self.get_opt(self.trainable_variables(), 1e-4) + super(DRRN, self).__init__(scale, channel, **kwargs) def fn(self, tensor): x = upsample(tensor, self.scale) diff --git a/VSR/Backend/Torch/Models/Contrib/__init__.py b/VSR/Backend/Torch/Models/Contrib/__init__.py new file mode 100644 index 0000000..d5b89eb --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 16 + diff --git a/VSR/Backend/Torch/Models/ntire19/__init__.py b/VSR/Backend/Torch/Models/Contrib/ntire19/__init__.py similarity index 100% rename from VSR/Backend/Torch/Models/ntire19/__init__.py rename to VSR/Backend/Torch/Models/Contrib/ntire19/__init__.py diff --git a/VSR/Backend/Torch/Models/ntire19/denoise.py b/VSR/Backend/Torch/Models/Contrib/ntire19/denoise.py similarity index 98% rename from VSR/Backend/Torch/Models/ntire19/denoise.py rename to VSR/Backend/Torch/Models/Contrib/ntire19/denoise.py index 7b6b85c..24d1995 100644 --- a/VSR/Backend/Torch/Models/ntire19/denoise.py +++ b/VSR/Backend/Torch/Models/Contrib/ntire19/denoise.py @@ -8,7 +8,8 @@ import torch import torch.nn as nn -from ..Arch import Activation, Rdb, SpaceToDepth, CBAM +from VSR.Backend.Torch.Models.Ops.Blocks import Activation, CBAM, Rdb +from VSR.Backend.Torch.Models.Ops.Scale import SpaceToDepth _logger = logging.getLogger("VSR.NTIRE2019.Denoise") diff --git a/VSR/Backend/Torch/Models/ntire19/edrn.py b/VSR/Backend/Torch/Models/Contrib/ntire19/edrn.py similarity index 100% rename from VSR/Backend/Torch/Models/ntire19/edrn.py rename to VSR/Backend/Torch/Models/Contrib/ntire19/edrn.py diff --git a/VSR/Backend/Torch/Models/ntire19/frn.py b/VSR/Backend/Torch/Models/Contrib/ntire19/frn.py similarity index 99% rename from VSR/Backend/Torch/Models/ntire19/frn.py rename to VSR/Backend/Torch/Models/Contrib/ntire19/frn.py index 399a553..01b29cf 100644 --- a/VSR/Backend/Torch/Models/ntire19/frn.py +++ b/VSR/Backend/Torch/Models/Contrib/ntire19/frn.py @@ -5,7 +5,7 @@ import torch.nn as nn -from ..edsr import common +from VSR.Backend.Torch.Models.Edsr import common ## Channel Attention (CA) Layer diff --git a/VSR/Backend/Torch/Models/ntire19/ran2.py b/VSR/Backend/Torch/Models/Contrib/ntire19/ran2.py similarity index 100% rename from VSR/Backend/Torch/Models/ntire19/ran2.py rename to VSR/Backend/Torch/Models/Contrib/ntire19/ran2.py diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/__init__.py b/VSR/Backend/Torch/Models/Contrib/ntire20/__init__.py new file mode 100644 index 0000000..25d400e --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 28 + +import logging +_logger = logging.getLogger("VSR.NTIRE2020") +_logger.info("Top rank models in NTIRE 2020." + "Real World Super-Resolution") diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/__init__.py b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/__init__.py new file mode 100644 index 0000000..d739b85 --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 28 + +import logging +_logger = logging.getLogger("VSR.RWSR") +_logger.info("LICENSE: RealSR is implemented by Xiaozhong Ji. " + "@xiaozhongji https://github.com/jixiaozhong/RealSR") diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/__init__.py b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/__init__.py new file mode 100644 index 0000000..960152e --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/__init__.py @@ -0,0 +1,66 @@ +# Copyright (c) 2017-2020 Apache 2.0. +# Author: Xiaozhong Ji +# Update: 2020 - 5 - 28 + +from .discriminator import ( + Discriminator_VGG_128, Discriminator_VGG_256, Discriminator_VGG_512, + NLayerDiscriminator, VGGFeatureExtractor +) +from .network import RRDBNet + + +#################### +# define network +#################### + +def define_G(which_model='RRDBNet', **opt): + """ + Generator + :param which_model: + :param opt: + :return: + """ + + if which_model == 'RRDBNet': + return RRDBNet(in_nc=opt['in_nc'], out_nc=opt['out_nc'], nf=opt['nf'], + nb=opt['nb']) + else: + raise NotImplementedError(f'Generator model [{which_model}] not recognized') + + +def define_D(which_model='NLayerDiscriminator', **opt): + """ + Discriminator + :param which_model: + :param opt: + :return: + """ + + if which_model == 'discriminator_vgg_128': + netD = Discriminator_VGG_128(in_nc=opt['in_nc'], nf=opt['nf']) + elif which_model == 'discriminator_vgg_256': + netD = Discriminator_VGG_256(in_nc=opt['in_nc'], nf=opt['nf']) + elif which_model == 'discriminator_vgg_512': + netD = Discriminator_VGG_512(in_nc=opt['in_nc'], nf=opt['nf']) + elif which_model == 'NLayerDiscriminator': + netD = NLayerDiscriminator(input_nc=opt['in_nc'], ndf=opt['nf'], + n_layers=opt['nlayer']) + else: + raise NotImplementedError( + f'Discriminator model [{which_model}] not recognized') + return netD + + +def define_F(use_bn=False): + """ + Define Network used for Perceptual Loss + PyTorch pre-trained VGG19-54, before ReLU. + :param use_bn: + :return: + """ + + feature_layer = 49 if use_bn else 34 + netF = VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn, + use_input_norm=True) + netF.eval() # No need to train + return netF diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/discriminator.py b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/discriminator.py new file mode 100644 index 0000000..216cfa3 --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/discriminator.py @@ -0,0 +1,279 @@ +# Copyright (c) 2017-2020 Apache 2.0. +# Author: Xiaozhong Ji +# Update: 2020 - 5 - 28 + +import torch +import torch.nn as nn +import torchvision + + +class NLayerDiscriminator(nn.Module): + """Defines a PatchGAN discriminator""" + + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): + """Construct a PatchGAN discriminator + + Parameters: + input_nc (int) -- the number of channels in input images + ndf (int) -- the number of filters in the last conv layer + n_layers (int) -- the number of conv layers in the discriminator + norm_layer -- normalization layer + """ + super(NLayerDiscriminator, self).__init__() + use_bias = False + kw = 4 + padw = 1 + sequence = [ + nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), + nn.LeakyReLU(0.2, True)] + nf_mult = 1 + nf_mult_prev = 1 + for n in range(1, n_layers): # gradually increase the number of filters + nf_mult_prev = nf_mult + nf_mult = min(2 ** n, 8) + sequence += [ + nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, + padding=padw, bias=use_bias), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True) + ] + + nf_mult_prev = nf_mult + nf_mult = min(2 ** n_layers, 8) + sequence += [ + nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, + padding=padw, bias=use_bias), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True) + ] + + sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, + padding=padw)] # output 1 channel prediction map + # TODO + self.model = nn.Sequential(*sequence) + + def forward(self, x): + """Standard forward.""" + return self.model(x) + + +class Discriminator_VGG_128(nn.Module): + def __init__(self, in_nc, nf): + super(Discriminator_VGG_128, self).__init__() + # [64, 128, 128] + self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) + self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False) + self.bn0_1 = nn.BatchNorm2d(nf, affine=True) + # [64, 64, 64] + self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False) + self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True) + self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False) + self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True) + # [128, 32, 32] + self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False) + self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True) + self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False) + self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True) + # [256, 16, 16] + self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False) + self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True) + # [512, 8, 8] + self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.linear1 = nn.Linear(512 * 4 * 4, 100) + self.linear2 = nn.Linear(100, 1) + + # activation function + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + def forward(self, x): + fea = self.lrelu(self.conv0_0(x)) + fea = self.lrelu(self.bn0_1(self.conv0_1(fea))) + + fea = self.lrelu(self.bn1_0(self.conv1_0(fea))) + fea = self.lrelu(self.bn1_1(self.conv1_1(fea))) + + fea = self.lrelu(self.bn2_0(self.conv2_0(fea))) + fea = self.lrelu(self.bn2_1(self.conv2_1(fea))) + + fea = self.lrelu(self.bn3_0(self.conv3_0(fea))) + fea = self.lrelu(self.bn3_1(self.conv3_1(fea))) + + fea = self.lrelu(self.bn4_0(self.conv4_0(fea))) + fea = self.lrelu(self.bn4_1(self.conv4_1(fea))) + + fea = fea.view(fea.size(0), -1) + fea = self.lrelu(self.linear1(fea)) + out = self.linear2(fea) + return out + + +class Discriminator_VGG_256(nn.Module): + def __init__(self, in_nc, nf): + super(Discriminator_VGG_256, self).__init__() + # [64, 128, 128] + self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) + self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False) + self.bn0_1 = nn.BatchNorm2d(nf, affine=True) + # [64, 64, 64] + self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False) + self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True) + self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False) + self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True) + # [128, 32, 32] + self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False) + self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True) + self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False) + self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True) + # [256, 16, 16] + self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False) + self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True) + # [512, 8, 8] + self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.conv5_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn5_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv5_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn5_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.linear1 = nn.Linear(512 * 4 * 4, 100) + self.linear2 = nn.Linear(100, 1) + + # activation function + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + def forward(self, x): + fea = self.lrelu(self.conv0_0(x)) + fea = self.lrelu(self.bn0_1(self.conv0_1(fea))) + + fea = self.lrelu(self.bn1_0(self.conv1_0(fea))) + fea = self.lrelu(self.bn1_1(self.conv1_1(fea))) + + fea = self.lrelu(self.bn2_0(self.conv2_0(fea))) + fea = self.lrelu(self.bn2_1(self.conv2_1(fea))) + + fea = self.lrelu(self.bn3_0(self.conv3_0(fea))) + fea = self.lrelu(self.bn3_1(self.conv3_1(fea))) + + fea = self.lrelu(self.bn4_0(self.conv4_0(fea))) + fea = self.lrelu(self.bn4_1(self.conv4_1(fea))) + + fea = self.lrelu(self.bn5_0(self.conv5_0(fea))) + fea = self.lrelu(self.bn5_1(self.conv5_1(fea))) + + fea = fea.view(fea.size(0), -1) + fea = self.lrelu(self.linear1(fea)) + out = self.linear2(fea) + return out + + +class Discriminator_VGG_512(nn.Module): + def __init__(self, in_nc, nf): + super(Discriminator_VGG_512, self).__init__() + # [64, 128, 128] + self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) + self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False) + self.bn0_1 = nn.BatchNorm2d(nf, affine=True) + # [64, 64, 64] + self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False) + self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True) + self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False) + self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True) + # [128, 32, 32] + self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False) + self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True) + self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False) + self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True) + # [256, 16, 16] + self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False) + self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True) + # [512, 8, 8] + self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.conv5_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn5_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv5_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn5_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.conv6_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) + self.bn6_0 = nn.BatchNorm2d(nf * 8, affine=True) + self.conv6_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) + self.bn6_1 = nn.BatchNorm2d(nf * 8, affine=True) + + self.linear1 = nn.Linear(512 * 4 * 4, 100) + self.linear2 = nn.Linear(100, 1) + + # activation function + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + def forward(self, x): + fea = self.lrelu(self.conv0_0(x)) + fea = self.lrelu(self.bn0_1(self.conv0_1(fea))) + + fea = self.lrelu(self.bn1_0(self.conv1_0(fea))) + fea = self.lrelu(self.bn1_1(self.conv1_1(fea))) + + fea = self.lrelu(self.bn2_0(self.conv2_0(fea))) + fea = self.lrelu(self.bn2_1(self.conv2_1(fea))) + + fea = self.lrelu(self.bn3_0(self.conv3_0(fea))) + fea = self.lrelu(self.bn3_1(self.conv3_1(fea))) + + fea = self.lrelu(self.bn4_0(self.conv4_0(fea))) + fea = self.lrelu(self.bn4_1(self.conv4_1(fea))) + + fea = self.lrelu(self.bn5_0(self.conv5_0(fea))) + fea = self.lrelu(self.bn5_1(self.conv5_1(fea))) + + fea = self.lrelu(self.bn6_0(self.conv6_0(fea))) + fea = self.lrelu(self.bn6_1(self.conv6_1(fea))) + + fea = fea.view(fea.size(0), -1) + fea = self.lrelu(self.linear1(fea)) + out = self.linear2(fea) + return out + + +class VGGFeatureExtractor(nn.Module): + def __init__(self, feature_layer=34, use_bn=False, use_input_norm=True): + super(VGGFeatureExtractor, self).__init__() + self.use_input_norm = use_input_norm + if use_bn: + model = torchvision.models.vgg19_bn(pretrained=True) + else: + model = torchvision.models.vgg19(pretrained=True) + if self.use_input_norm: + mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) + # [0.485 - 1, 0.456 - 1, 0.406 - 1] if input in range [-1, 1] + std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) + # [0.229 * 2, 0.224 * 2, 0.225 * 2] if input in range [-1, 1] + self.register_buffer('mean', mean) + self.register_buffer('std', std) + self.features = nn.Sequential( + *list(model.features.children())[:(feature_layer + 1)]) + # No need to BP to variable + for k, v in self.features.named_parameters(): + v.requires_grad = False + + def forward(self, x): + # Assume input range is [0, 1] + if self.use_input_norm: + dev = x.device + x = (x - self.mean.to(dev)) / self.std.to(dev) + output = self.features(x) + return output diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/loss.py b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/loss.py new file mode 100644 index 0000000..d0f9ed3 --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/loss.py @@ -0,0 +1,79 @@ +# Copyright (c) 2017-2020 Apache 2.0. +# Author: Xiaozhong Ji +# Update: 2020 - 5 - 28 +import torch +import torch.nn as nn + + +class CharbonnierLoss(nn.Module): + """Charbonnier Loss (L1)""" + + def __init__(self, eps=1e-6): + super(CharbonnierLoss, self).__init__() + self.eps = eps + + def forward(self, x, y): + diff = x - y + loss = torch.sum(torch.sqrt(diff * diff + self.eps)) + return loss + + +# Define GAN loss: [vanilla | lsgan | wgan-gp] +class GANLoss(nn.Module): + def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0): + super(GANLoss, self).__init__() + self.gan_type = gan_type.lower() + self.real_label_val = real_label_val + self.fake_label_val = fake_label_val + + if self.gan_type == 'gan' or self.gan_type == 'ragan': + self.loss = nn.BCEWithLogitsLoss() + elif self.gan_type == 'lsgan': + self.loss = nn.MSELoss() + elif self.gan_type == 'wgan-gp': + + def wgan_loss(input, target): + # target is boolean + return -1 * input.mean() if target else input.mean() + + self.loss = wgan_loss + else: + raise NotImplementedError( + 'GAN type [{:s}] is not found'.format(self.gan_type)) + + def get_target_label(self, input, target_is_real): + if self.gan_type == 'wgan-gp': + return target_is_real + if target_is_real: + return torch.empty_like(input).fill_(self.real_label_val) + else: + return torch.empty_like(input).fill_(self.fake_label_val) + + def forward(self, input, target_is_real): + target_label = self.get_target_label(input, target_is_real) + loss = self.loss(input, target_label) + return loss + + +class GradientPenaltyLoss(nn.Module): + def __init__(self, device=torch.device('cpu')): + super(GradientPenaltyLoss, self).__init__() + self.register_buffer('grad_outputs', torch.Tensor()) + self.grad_outputs = self.grad_outputs.to(device) + + def get_grad_outputs(self, input): + if self.grad_outputs.size() != input.size(): + self.grad_outputs.resize_(input.size()).fill_(1.0) + return self.grad_outputs + + def forward(self, interp, interp_crit): + grad_outputs = self.get_grad_outputs(interp_crit) + grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp, + grad_outputs=grad_outputs, + create_graph=True, + retain_graph=True, only_inputs=True)[0] + grad_interp = grad_interp.view(grad_interp.size(0), -1) + grad_interp_norm = grad_interp.norm(2, dim=1) + + loss = ((grad_interp_norm - 1) ** 2).mean() + return loss diff --git a/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/network.py b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/network.py new file mode 100644 index 0000000..2e74f33 --- /dev/null +++ b/VSR/Backend/Torch/Models/Contrib/ntire20/xiaozhong/ops/network.py @@ -0,0 +1,92 @@ +# Copyright (c) 2017-2020 Apache 2.0. +# Author: Xiaozhong Ji +# Update: 2020 - 5 - 28 + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def initialize_weights(net_l, scale=1): + if not isinstance(net_l, list): + net_l = [net_l] + for net in net_l: + for m in net.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') + m.weight.data *= scale # for residual block + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, nn.Linear): + nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') + m.weight.data *= scale + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias.data, 0.0) + + +class ResidualDenseBlock_5C(nn.Module): + def __init__(self, nf=64, gc=32, bias=True): + super(ResidualDenseBlock_5C, self).__init__() + # gc: growth channel, i.e. intermediate channels + self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) + self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) + self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) + self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) + self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + # initialization + initialize_weights( + [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) + + def forward(self, x): + x1 = self.lrelu(self.conv1(x)) + x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) + x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) + x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) + x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) + return x5 * 0.2 + x + + +class RRDB(nn.Module): + '''Residual in Residual Dense Block''' + + def __init__(self, nf, gc=32): + super(RRDB, self).__init__() + self.RDB1 = ResidualDenseBlock_5C(nf, gc) + self.RDB2 = ResidualDenseBlock_5C(nf, gc) + self.RDB3 = ResidualDenseBlock_5C(nf, gc) + + def forward(self, x): + out = self.RDB1(x) + out = self.RDB2(out) + out = self.RDB3(out) + return out * 0.2 + x + + +class RRDBNet(nn.Module): + def __init__(self, in_nc, out_nc, nf, nb, gc=32): + super(RRDBNet, self).__init__() + self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) + self.RRDB_trunk = nn.Sequential(*[RRDB(nf=nf, gc=gc) for _ in range(nb)]) + self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) + #### upsampling + self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) + self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) + self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) + self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + def forward(self, x): + fea = self.conv_first(x) + trunk = self.trunk_conv(self.RRDB_trunk(fea)) + fea = fea + trunk + fea = self.lrelu( + self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))) + fea = self.lrelu( + self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))) + out = self.conv_last(self.lrelu(self.HRconv(fea))) + return out diff --git a/VSR/Backend/Torch/Models/Crdn.py b/VSR/Backend/Torch/Models/Crdn.py index b40ea17..be06202 100644 --- a/VSR/Backend/Torch/Models/Crdn.py +++ b/VSR/Backend/Torch/Models/Crdn.py @@ -8,10 +8,8 @@ import torch.nn.functional as F from VSR.Util.Utility import to_list -from . import Model -from .Arch import CascadeRdn -from ..Framework.Summary import get_writer -from ..Util import Metrics +from .Ops.Blocks import CascadeRdn +from .Optim.SISR import L1Optimizer class Upsample(nn.Module): @@ -34,21 +32,21 @@ def __init__(self, blocks=(4, 4), **kwargs): self.blocks = to_list(blocks, 2) self.entry = nn.Sequential( - nn.Conv2d(3, 32, 7, 1, 3), - nn.Conv2d(32, 32, 5, 1, 2)) + nn.Conv2d(3, 32, 7, 1, 3), + nn.Conv2d(32, 32, 5, 1, 2)) self.exit = nn.Sequential( - nn.Conv2d(32, 32, 3, 1, 1), - nn.Conv2d(32, 3, 3, 1, 1)) + nn.Conv2d(32, 32, 3, 1, 1), + nn.Conv2d(32, 3, 3, 1, 1)) self.down1 = nn.Conv2d(32, 64, 3, 2, 1) self.down2 = nn.Conv2d(64, 128, 3, 2, 1) self.up1 = Upsample([128, 64]) self.up2 = Upsample([64, 32]) - self.cb1 = CascadeRdn(32, 3, True) - self.cb2 = CascadeRdn(64, 3, True) - self.cb3 = CascadeRdn(128, 3, True) - self.cb4 = CascadeRdn(128, 3, True) - self.cb5 = CascadeRdn(64, 3, True) - self.cb6 = CascadeRdn(32, 3, True) + self.cb1 = CascadeRdn(32, 32, 3, True) + self.cb2 = CascadeRdn(64, 64, 3, True) + self.cb3 = CascadeRdn(128, 128, 3, True) + self.cb4 = CascadeRdn(128, 128, 3, True) + self.cb5 = CascadeRdn(64, 64, 3, True) + self.cb6 = CascadeRdn(32, 32, 3, True) def forward(self, inputs): entry = self.entry(inputs) @@ -67,29 +65,10 @@ def forward(self, inputs): return out -class CRDN(Model.SuperResolution): - def __init__(self, **kwargs): - super(CRDN, self).__init__(scale=1, channel=3) +class CRDN(L1Optimizer): + def __init__(self, channel=3, scale=1, **kwargs): self.rsr = Crdn() - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(CRDN, self).__init__(scale=scale, channel=channel, **kwargs) - def train(self, inputs, labels, learning_rate=None): - sr = self.rsr(inputs[0]) - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.rsr(inputs[0]).cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - writer = get_writer(self.name) - if writer is not None: - writer.image('clean', sr) - return [sr.numpy()], metrics + def fn(self, x): + return self.rsr(x) diff --git a/VSR/Backend/Torch/Models/Dbpn.py b/VSR/Backend/Torch/Models/Dbpn.py index cc7b963..8055e35 100644 --- a/VSR/Backend/Torch/Models/Dbpn.py +++ b/VSR/Backend/Torch/Models/Dbpn.py @@ -3,59 +3,149 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 +import logging + import torch -import torch.nn.functional as F - -from .Model import SuperResolution -from .dbpn import dbpn, dbpn_v1, dbpns -from ..Util import Metrics - - -class DBPNMaker(torch.nn.Module): - def __init__(self, mode='dbpn', **kwargs): - super(DBPNMaker, self).__init__() - _allowed_mode = ('dbpn', 'dbpnll', 'dbpns') - mode = mode.lower() - assert mode in _allowed_mode, "mode must in ('DBPN', 'DBPNLL', 'DBPNS)." - if mode == 'dbpn': - self.module = dbpn.Net(**kwargs) - elif mode == 'dbpnll': - self.module = dbpn_v1.Net(**kwargs) - elif mode == 'dbpns': - self.module = dbpns.Net(**kwargs) - else: - raise NotImplemented +import torch.nn as nn + +from .Ops.Blocks import EasyConv2d +from .Optim.SISR import L1Optimizer + +_logger = logging.getLogger("VSR.DBPN") +_logger.info("LICENSE: DBPN is implemented by Haris. " + "@alterzero https://github.com/alterzero/DBPN-Pytorch") + + +class UpBlock(torch.nn.Module): + def __init__(self, num_filter, kernel_size=8, stride=4, activation='prelu'): + super(UpBlock, self).__init__() + self.up_conv1 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + self.up_conv2 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + self.up_conv3 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + + def forward(self, x): + h0 = self.up_conv1(x) + l0 = self.up_conv2(h0) + h1 = self.up_conv3(l0 - x) + return h1 + h0 + + +class DownBlock(torch.nn.Module): + def __init__(self, num_filter, kernel_size=8, stride=4, activation='prelu'): + super(DownBlock, self).__init__() + self.down_conv1 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + self.down_conv2 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + self.down_conv3 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + + def forward(self, x): + l0 = self.down_conv1(x) + h0 = self.down_conv2(l0) + l1 = self.down_conv3(h0 - x) + return l1 + l0 + + +class D_UpBlock(torch.nn.Module): + def __init__(self, num_filter, kernel_size=8, stride=4, num_stages=1, + activation='prelu'): + super(D_UpBlock, self).__init__() + self.conv = EasyConv2d(num_filter * num_stages, num_filter, 1, + activation=activation) + self.up_conv1 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + self.up_conv2 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + self.up_conv3 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + + def forward(self, x): + x = self.conv(x) + h0 = self.up_conv1(x) + l0 = self.up_conv2(h0) + h1 = self.up_conv3(l0 - x) + return h1 + h0 + + +class D_DownBlock(torch.nn.Module): + def __init__(self, num_filter, kernel_size=8, stride=4, num_stages=1, + activation='prelu'): + super(D_DownBlock, self).__init__() + self.conv = EasyConv2d(num_filter * num_stages, num_filter, 1, + activation=activation) + self.down_conv1 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + self.down_conv2 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation, transposed=True) + self.down_conv3 = EasyConv2d(num_filter, num_filter, kernel_size, stride, + activation=activation) + + def forward(self, x): + x = self.conv(x) + l0 = self.down_conv1(x) + h0 = self.down_conv2(l0) + l1 = self.down_conv3(h0 - x) + return l1 + l0 + + +class Dbpn(nn.Module): + def __init__(self, channels, scale, base_filter=64, feat=256, num_stages=7): + super(Dbpn, self).__init__() + kernel, stride = self.get_kernel_stride(scale) + + # Initial Feature Extraction + self.feat0 = EasyConv2d(channels, feat, 3, activation='prelu') + self.feat1 = EasyConv2d(feat, base_filter, 1, activation='prelu') + # Back-projection stages + self.up1 = UpBlock(base_filter, kernel, stride) + self.down1 = DownBlock(base_filter, kernel, stride) + self.up2 = UpBlock(base_filter, kernel, stride) + for i in range(2, num_stages): + self.__setattr__(f'down{i}', D_DownBlock(base_filter, kernel, stride, i)) + self.__setattr__(f'up{i + 1}', D_UpBlock(base_filter, kernel, stride, i)) + self.num_stages = num_stages + # Reconstruction + self.output_conv = EasyConv2d(num_stages * base_filter, channels, 3) def forward(self, x): - return self.module(x) - - -class DBPN(SuperResolution): - - def __init__(self, scale, mode='dbpn', **kwargs): - super(DBPN, self).__init__(scale, 3) - self.body = DBPNMaker(mode, scale_factor=scale, **kwargs) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - sr = self.body(inputs[0]) - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.body(inputs[0]).cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics - - def export(self, export_dir): - device = list(self.body.parameters())[0].device - inputs = torch.randn(1, self.channel, 144, 128, device=device) - torch.onnx.export(self.body, (inputs,), export_dir / 'dbpn.onnx') + x = self.feat0(x) + x = self.feat1(x) + + h1 = self.up1(x) + l1 = self.down1(h1) + h2 = self.up2(l1) + + h = h2 + concat_h = h1 + concat_l = l1 + for i in range(2, self.num_stages): + concat_h = torch.cat((h, concat_h), 1) + l = self.__getattr__(f'down{i}')(concat_h) + concat_l = torch.cat((l, concat_l), 1) + h = self.__getattr__(f'up{i + 1}')(concat_l) + concat_h = torch.cat((h, concat_h), 1) + x = self.output_conv(concat_h) + return x + + @staticmethod + def get_kernel_stride(scale): + if scale == 2: + return 6, 2 + elif scale == 4: + return 8, 4 + elif scale == 8: + return 12, 8 + + +class DBPN(L1Optimizer): + def __init__(self, channel, scale, base_filter=64, feat=256, num_stages=7, + **kwargs): + self.body = Dbpn(channel, scale, base_filter, feat, num_stages) + super(DBPN, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + return self.body(x) diff --git a/VSR/Backend/Torch/Models/Drn.py b/VSR/Backend/Torch/Models/Drn.py index 83009a6..1c0487e 100644 --- a/VSR/Backend/Torch/Models/Drn.py +++ b/VSR/Backend/Torch/Models/Drn.py @@ -7,11 +7,12 @@ import torch.nn as nn import torch.nn.functional as F -from .Arch import Upsample, EasyConv2d +from VSR.Backend.Torch.Models.Ops.Loss import total_variance from .Model import SuperResolution +from .Ops.Blocks import EasyConv2d +from .Ops.Scale import Upsample from ..Framework.Summary import get_writer -from ..Util import Metrics, Utility -from .Loss import total_variance +from ..Util import Metrics class NoiseExtractor(nn.Module): diff --git a/VSR/Backend/Torch/Models/Edsr.py b/VSR/Backend/Torch/Models/Edsr.py index ab80416..db54790 100644 --- a/VSR/Backend/Torch/Models/Edsr.py +++ b/VSR/Backend/Torch/Models/Edsr.py @@ -3,74 +3,113 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 -import torch -import torch.nn.functional as F - -from .Model import SuperResolution -from .edsr import edsr, mdsr -from ..Util import Metrics -from VSR.Util.Config import Config - - -class EDSR(SuperResolution): - - def __init__(self, scale, **kwargs): - super(EDSR, self).__init__(scale, 3) - args = Config(kwargs) - args.scale = [scale] - self.rgb_range = args.rgb_range - self.edsr = edsr.EDSR(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - sr = self.edsr(inputs[0] * self.rgb_range) / self.rgb_range - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.edsr(inputs[0] * self.rgb_range) / self.rgb_range - sr = sr.cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics - - -class MSDR(SuperResolution): - - def __init__(self, scale, **kwargs): - super(MSDR, self).__init__(scale, 3) - args = Config(kwargs) - args.scale = [2, 3, 4] - self.scales = args.scale - self.rgb_range = args.rgb_range - self.edsr = mdsr.MDSR(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - # TODO - self.edsr.set_scale(2) - sr = self.edsr(inputs[0] * self.rgb_range) / self.rgb_range - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - self.edsr.set_scale(self.scales.index(self.scale)) - sr = self.edsr(inputs[0] * self.rgb_range) / self.rgb_range - sr = sr.cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics +import logging +import random + +import torch.nn as nn + +from .Ops.Blocks import EasyConv2d, MeanShift, RB +from .Ops.Scale import MultiscaleUpsample, Upsample +from .Optim.SISR import L1Optimizer + +_logger = logging.getLogger("VSR.EDSR") +_logger.info("LICENSE: EDSR is implemented by Bee Lim. " + "@thstkdgus35 https://github.com/thstkdgus35/EDSR-PyTorch") + +url = { + 'r16f64x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x2-1bc95232.pt', + 'r16f64x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x3-abf2a44e.pt', + 'r16f64x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x4-6b446fab.pt', + 'r32f256x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x2-0edfb8a3.pt', + 'r32f256x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x3-ea3ef2c6.pt', + 'r32f256x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x4-4f62e9ef.pt', + 'r16f64': 'https://cv.snu.ac.kr/research/EDSR/models/mdsr_baseline-a00cab12.pt', + 'r80f64': 'https://cv.snu.ac.kr/research/EDSR/models/mdsr-4a78bedf.pt' +} + + +class Edsr(nn.Module): + def __init__(self, scale, channel, n_resblocks, n_feats, rgb_range): + super(Edsr, self).__init__() + self.sub_mean = MeanShift((0.4488, 0.4371, 0.4040), True, rgb_range) + self.add_mean = MeanShift((0.4488, 0.4371, 0.4040), False, rgb_range) + # define head module + m_head = [EasyConv2d(channel, n_feats, 3)] + # define body module + m_body = [RB(n_feats, n_feats, 3, activation='relu') for _ in + range(n_resblocks)] + m_body.append(EasyConv2d(n_feats, n_feats, 3)) + # define tail module + m_tail = [ + Upsample(n_feats, scale), + EasyConv2d(n_feats, channel, 3)] + self.head = nn.Sequential(*m_head) + self.body = nn.Sequential(*m_body) + self.tail = nn.Sequential(*m_tail) + + def forward(self, x, **kwargs): + x = self.sub_mean(x) + x = self.head(x) + res = self.body(x) + x + x = self.tail(res) + x = self.add_mean(x) + return x + + +class Mdsr(nn.Module): + def __init__(self, scales, channel, n_resblocks, n_feats, rgb_range): + super(Mdsr, self).__init__() + self.sub_mean = MeanShift((0.4488, 0.4371, 0.4040), True, rgb_range) + self.add_mean = MeanShift((0.4488, 0.4371, 0.4040), False, rgb_range) + m_head = [EasyConv2d(channel, n_feats, 3)] + self.pre_process = nn.ModuleList([ + nn.Sequential( + RB(n_feats, kernel_size=5, activation='relu'), + RB(n_feats, kernel_size=5, activation='relu') + ) for _ in scales + ]) + m_body = [RB(n_feats, kernel_size=3, activation='relu') for _ in + range(n_resblocks)] + m_body.append(EasyConv2d(n_feats, n_feats, 3)) + self.upsample = MultiscaleUpsample(n_feats, scales) + m_tail = [EasyConv2d(n_feats, channel, 3)] + self.head = nn.Sequential(*m_head) + self.body = nn.Sequential(*m_body) + self.tail = nn.Sequential(*m_tail) + + def forward(self, x, scale): + x = self.sub_mean(x) + x = self.head(x) + x = self.pre_process[scale](x) + res = self.body(x) + x + x = self.upsample(res, scale) + x = self.tail(x) + x = self.add_mean(x) + return x + + +class EDSR(L1Optimizer): + def __init__(self, scale, channel, n_resblocks=16, n_feats=64, rgb_range=255, + **kwargs): + self.rgb_range = rgb_range + self.edsr = Edsr(scale, channel, n_resblocks, n_feats, rgb_range) + super(EDSR, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + return self.edsr(x * self.rgb_range) / self.rgb_range + + +class MSDR(L1Optimizer): + def __init__(self, scale, channel, n_resblocks=16, n_feats=64, rgb_range=255, + **kwargs): + self.rgb_range = rgb_range + self.scales = (2, 3, 4) + self.mdsr = Mdsr(self.scales, channel, n_resblocks, n_feats, rgb_range) + super(MSDR, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + if self.mdsr.training: + scale = self.scales[random.randint(0, 3)] + else: + scale = self.scale + return self.mdsr(x * self.rgb_range, scale) / self.rgb_range diff --git a/VSR/Backend/Torch/Models/Esrgan.py b/VSR/Backend/Torch/Models/Esrgan.py index d8ea135..794c372 100644 --- a/VSR/Backend/Torch/Models/Esrgan.py +++ b/VSR/Backend/Torch/Models/Esrgan.py @@ -3,93 +3,60 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 -import numpy as np -import torch -import torch.nn.functional as F - -from . import Discriminator as disc -from .Model import SuperResolution -from .Loss import gan_bce_loss, VggFeatureLoss -from .esrgan import architecture as arch -from ..Util import Metrics -from ..Framework.Summary import get_writer - - -class ESRGAN(SuperResolution): - def __init__(self, scale, patch_size=128, weights=(0.01, 1, 5e-3), **kwargs): - super(ESRGAN, self).__init__(scale, 3) - self.use_vgg = weights[1] > 0 - self.use_gan = weights[2] > 0 - if self.use_gan: - self.dnet = disc.DCGAN(3, np.log2(patch_size // 4) * 2, 'bn') - self.optd = torch.optim.Adam(self.trainable_variables('dnet'), 1e-4) - self.rrdb = arch.RRDB_Net(upscale=scale, **kwargs) - self.optg = torch.optim.Adam(self.trainable_variables('rrdb'), 1e-4) - if self.use_vgg: - self.vgg = [VggFeatureLoss(['block5_conv4'], True)] - # image, vgg, gan - self.w = weights +import logging - def cuda(self): - super(ESRGAN, self).cuda() - if self.use_vgg: - self.vgg[0].cuda() - - def train(self, inputs, labels, learning_rate=None): - sr = self.rrdb(inputs[0]) - for opt in self.opts.values(): - if learning_rate: - for param_group in opt.param_groups: - param_group["lr"] = learning_rate - image_loss = F.l1_loss(sr, labels[0]) - loss = image_loss * self.w[0] - if self.use_vgg: - feature_loss = F.l1_loss(self.vgg[0](sr)[0], self.vgg[0](labels[0])[0]) - loss += feature_loss * self.w[1] - if self.use_gan: - # update G - self.optg.zero_grad() - fake = self.dnet(sr) - gan_loss_g = gan_bce_loss(fake, True) - loss += gan_loss_g * self.w[2] - loss.backward() - self.optg.step() - # update D - self.optd.zero_grad() - real = self.dnet(labels[0]) - fake = self.dnet(sr.detach()) - loss_d = gan_bce_loss(real, True) + gan_bce_loss(fake, False) - loss_d.backward() - self.optd.step() - return { - 'loss': loss.detach().cpu().numpy(), - 'image': image_loss.detach().cpu().numpy(), - 'loss_g': gan_loss_g.detach().cpu().numpy(), - 'loss_d': loss_d.detach().cpu().numpy() - } - else: - self.optg.zero_grad() - loss.backward() - self.optg.step() - return { - 'loss': loss.detach().cpu().numpy(), - 'image': image_loss.detach().cpu().numpy() - } - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.rrdb(inputs[0]).cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - writer = get_writer(self.name) - if writer is not None: - step = kwargs.get('epoch') - writer.image('sr', sr.clamp(0, 1), step=step) - writer.image('lr', inputs[0], step=step) - writer.image('hr', labels[0], step=step) - return [sr.numpy()], metrics - - def export(self, export_dir): - device = list(self.rrdb.parameters())[0].device - inputs = torch.randn(1, self.channel, 144, 128, device=device) - torch.onnx.export(self.rrdb, (inputs,), export_dir / 'rrdb.onnx') +import numpy as np +import torch.nn as nn + +from .Ops.Blocks import Activation, EasyConv2d, Rrdb +from .Ops.Discriminator import DCGAN +from .Ops.Scale import Upsample +from .Optim.SISR import PerceptualOptimizer + +_logger = logging.getLogger("VSR.ESRGAN") +_logger.info("LICENSE: ESRGAN is implemented by Xintao Wang. " + "@xinntao https://github.com/xinntao/ESRGAN") + + +class RRDB_Net(nn.Module): + def __init__(self, channel, scale, nf, nb, gc=32): + super(RRDB_Net, self).__init__() + self.head = EasyConv2d(channel, nf, kernel_size=3) + rb_blocks = [ + Rrdb(nf, gc, 5, 0.2, kernel_size=3, + activation=Activation('lrelu', negative_slope=0.2)) + for _ in range(nb)] + LR_conv = EasyConv2d(nf, nf, kernel_size=3) + upsampler = [Upsample(nf, scale, 'nearest', + activation=Activation('lrelu', negative_slope=0.2))] + HR_conv0 = EasyConv2d(nf, nf, kernel_size=3, activation='lrelu', + negative_slope=0.2) + HR_conv1 = EasyConv2d(nf, channel, kernel_size=3) + self.body = nn.Sequential(*rb_blocks, LR_conv) + self.tail = nn.Sequential(*upsampler, HR_conv0, HR_conv1) + + def forward(self, x): + x = self.head(x) + x = self.body(x) + x + x = self.tail(x) + return x + + +class ESRGAN(PerceptualOptimizer): + def __init__(self, channel, scale, patch_size=128, weights=(0.01, 1, 5e-3), + nf=64, nb=23, gc=32, **kwargs): + self.rrdb = RRDB_Net(channel, scale, nf, nb, gc) + super(ESRGAN, self).__init__(scale, channel, + discriminator=DCGAN, + discriminator_kwargs={ + 'channel': channel, + 'scale': scale, + 'num_layers': np.log2(patch_size // 4) * 2, + 'norm': 'BN' + }, + image_weight=weights[0], + feature_weight=weights[1], + gan_weight=weights[2], **kwargs) + + def fn(self, x): + return self.rrdb(x) diff --git a/VSR/Backend/Torch/Models/Ffdnet.py b/VSR/Backend/Torch/Models/Ffdnet.py index a1a7867..aa30aab 100644 --- a/VSR/Backend/Torch/Models/Ffdnet.py +++ b/VSR/Backend/Torch/Models/Ffdnet.py @@ -7,8 +7,9 @@ import torch.nn.functional as F from torch import nn -from .Arch import EasyConv2d, SpaceToDepth, Upsample from .Model import SuperResolution +from .Ops.Blocks import EasyConv2d +from .Ops.Scale import SpaceToDepth, Upsample from ..Framework.Summary import get_writer from ..Util import Metrics diff --git a/VSR/Backend/Torch/Models/Frvsr.py b/VSR/Backend/Torch/Models/Frvsr.py index 0d4dbbc..92b0a6e 100644 --- a/VSR/Backend/Torch/Models/Frvsr.py +++ b/VSR/Backend/Torch/Models/Frvsr.py @@ -3,32 +3,53 @@ # Email: wenyi.tang@intel.com # Update Date: 4/1/19, 7:13 PM +import logging + import numpy as np import torch import torch.nn.functional as F from torch import nn -from .Arch import SpaceToDepth -from .Loss import total_variance from .Model import SuperResolution -from .frvsr.ops import FNet, SRNet -from .video.motion import STN +from .Ops.Blocks import RB +from .Ops.Loss import total_variance +from .Ops.Motion import Flownet, STN +from .Ops.Scale import SpaceToDepth, Upsample from ..Framework.Summary import get_writer from ..Util import Metrics from ..Util.Utility import pad_if_divide, upsample +_logger = logging.getLogger("VSR.FRVSR") +_logger.info("LICENSE: FRVSR is proposed by Sajjadi, et. al. " + "implemented by LoSeall. " + "@loseall https://github.com/loseall/VideoSuperResolution") + + +class SRNet(nn.Module): + def __init__(self, channel, scale, n_rb=10): + super(SRNet, self).__init__() + rbs = [RB(64, activation='relu') for _ in range(n_rb)] + entry = [nn.Conv2d(channel * (scale ** 2 + 1), 64, 3, 1, 1), nn.ReLU(True)] + up = Upsample(64, scale, method='ps') + out = nn.Conv2d(64, channel, 3, 1, 1) + self.body = nn.Sequential(*entry, *rbs, up, out) + + def forward(self, *inputs): + x = torch.cat(inputs, dim=1) + return self.body(x) + class FRNet(nn.Module): def __init__(self, channel, scale, n_rb): super(FRNet, self).__init__() - self.fnet = FNet(channel, gain=32) + self.fnet = Flownet(channel) self.warp = STN(padding_mode='border') self.snet = SRNet(channel, scale, n_rb) self.space_to_depth = SpaceToDepth(scale) self.scale = scale def forward(self, lr, last_lr, last_sr): - flow = self.fnet(lr, last_lr) + flow = self.fnet(lr, last_lr, gain=32) flow2 = self.scale * upsample(flow, self.scale) hw = self.warp(last_sr, flow2[:, 0], flow2[:, 1]) lw = self.warp(last_lr, flow[:, 0], flow[:, 1]) diff --git a/VSR/Backend/Torch/Models/Mldn.py b/VSR/Backend/Torch/Models/Mldn.py index 6f38f06..0eb52fa 100644 --- a/VSR/Backend/Torch/Models/Mldn.py +++ b/VSR/Backend/Torch/Models/Mldn.py @@ -7,8 +7,9 @@ import torch.nn as nn import torch.nn.functional as F -from .Arch import CascadeRdn, Upsample from .Model import SuperResolution +from .Ops.Blocks import CascadeRdn +from .Ops.Scale import Upsample from ..Framework.Summary import get_writer from ..Util import Metrics, Utility diff --git a/VSR/Backend/Torch/Models/Model.py b/VSR/Backend/Torch/Models/Model.py index 38dfb7e..2944061 100644 --- a/VSR/Backend/Torch/Models/Model.py +++ b/VSR/Backend/Torch/Models/Model.py @@ -3,13 +3,15 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/4/3 下午5:10 -import torch import logging +from collections import OrderedDict + +import torch from ..Framework.Trainer import SRTrainer -class BasicModel: +class BasicModel(object): """Trainable model wrapper for PyTorch nn.Module objects There are 2 built-in attributes: @@ -19,14 +21,17 @@ class BasicModel: appended if a derived object assign any attribute with `optim.Optimizer`. """ - def __init__(self, **kwargs): - self.modules = {} - self.opts = {} + def _setup(self): + self.setup = True + self.modules = OrderedDict() + self.opts = OrderedDict() self.name = '' - self._trainer = None + self.loaded = None def __setattr__(self, key, value): - if key in ('modules', 'opts',): + if not hasattr(self, 'setup') and key != 'setup': + self._setup() + if key in ('modules', 'opts', 'setup'): if hasattr(self, key): raise ValueError(f"Can't overwrite built-in '{key}' of BasicModel") if isinstance(value, torch.nn.Module): @@ -36,7 +41,7 @@ def __setattr__(self, key, value): else: # TODO: why assign twice?? raise NotImplementedError - else: + elif len(list(value.parameters())): self.modules[key] = value self.name += f'[{key}]' if isinstance(value, torch.optim.Optimizer): @@ -96,6 +101,15 @@ def cuda(self): if torch.cuda.is_available(): self.modules[i] = self.modules[i].cuda() + def distributed(self): + if torch.distributed.is_available(): + torch.distributed.init_process_group(backend='nccl', init_method="env://") + for i in self.modules: + if torch.distributed.is_available() and torch.distributed.is_nccl_available(): + self.modules[i] = torch.nn.parallel.DistributedDataParallel(self.modules[i]) + else: + self.modules[i] = torch.nn.DataParallel(self.modules[i]) + def export(self, export_dir): """export ONNX model. @@ -120,21 +134,45 @@ def get_executor(self, root): def load(self, pth, map_location=None): for key, model in self.modules.items(): if not isinstance(pth, dict): - model.load_state_dict(torch.load(str(pth), map_location=map_location)) + self.sequential_load(model, str(pth), map_location) break - model.load_state_dict( - torch.load(str(pth[key]), map_location=map_location)) + self.sequential_load(model, str(pth[key]), map_location) + self.loaded = True for key, opt in self.opts.items(): if isinstance(pth, dict): opt.load_state_dict( torch.load(str(pth[key]), map_location=map_location)) + @staticmethod + def sequential_load(module, pth, map_location=None): + state_dict = torch.load(pth, map_location=map_location) + p = module.state_dict() + while len(state_dict) and len(p): + saved_name, saved_data = state_dict.popitem() + name, buffer = p.popitem() + if saved_name != name: + logging.getLogger('VSR').warning( + f"unmatched name: expected {name}, got {saved_name}.") + if buffer.shape == saved_data.shape: + buffer.data.copy_(saved_data) + else: + logging.getLogger('VSR').error( + f"Checkpoint shape mismatch for {name}, " + f"expected {buffer.shape}, but got {saved_data.shape}") + raise ValueError + while len(state_dict): + saved_name, _ = state_dict.popitem() + logging.getLogger('VSR').warning(f"Unexpected keys: {saved_name}") + while len(p): + name, _ = p.popitem() + logging.getLogger('VSR').warning(f"Missing keys: {saved_name}") + class SuperResolution(BasicModel): """A default model for (video) super-resolution""" def __init__(self, scale, channel, **kwargs): - super(SuperResolution, self).__init__(**kwargs) + super(SuperResolution, self).__init__() self.scale = scale self.channel = channel # Default SR trainer diff --git a/VSR/Backend/Torch/Models/Msrn.py b/VSR/Backend/Torch/Models/Msrn.py index 32aa33a..fc5b602 100644 --- a/VSR/Backend/Torch/Models/Msrn.py +++ b/VSR/Backend/Torch/Models/Msrn.py @@ -3,40 +3,91 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 +import logging + import torch +import torch.nn as nn import torch.nn.functional as F -from .Model import SuperResolution -from .msrn import msrn -from ..Util import Metrics -from VSR.Util.Config import Config - - -class MSRN(SuperResolution): - - def __init__(self, scale, **kwargs): - super(MSRN, self).__init__(scale, 3) - args = Config(kwargs) - args.scale = [scale] - self.rgb_range = args.rgb_range - self.msrn = msrn.MSRN(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - sr = self.msrn(inputs[0] * self.rgb_range) / self.rgb_range - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.msrn(inputs[0] * self.rgb_range) / self.rgb_range - sr = sr.cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics +from .Ops.Blocks import EasyConv2d, MeanShift +from .Ops.Scale import Upsample +from .Optim.SISR import L1Optimizer + +_logger = logging.getLogger("VSR.MSRN") +_logger.info("LICENSE: MSRN is implemented by Juncheng Li. " + "@MIVRC https://github.com/MIVRC/MSRN-PyTorch") + + +class MSRB(nn.Module): + def __init__(self, n_feats=64): + super(MSRB, self).__init__() + self.conv_3_1 = EasyConv2d(n_feats, n_feats, 3) + self.conv_3_2 = EasyConv2d(n_feats * 2, n_feats * 2, 3) + self.conv_5_1 = EasyConv2d(n_feats, n_feats, 5) + self.conv_5_2 = EasyConv2d(n_feats * 2, n_feats * 2, 5) + self.confusion = nn.Conv2d(n_feats * 4, n_feats, 1, padding=0, stride=1) + + def forward(self, x): + input_1 = x + output_3_1 = F.relu(self.conv_3_1(input_1)) + output_5_1 = F.relu(self.conv_5_1(input_1)) + input_2 = torch.cat([output_3_1, output_5_1], 1) + output_3_2 = F.relu(self.conv_3_2(input_2)) + output_5_2 = F.relu(self.conv_5_2(input_2)) + input_3 = torch.cat([output_3_2, output_5_2], 1) + output = self.confusion(input_3) + output += x + return output + + +class Msrn(nn.Module): + def __init__(self, channel, scale, n_feats, n_blocks, rgb_range): + super(Msrn, self).__init__() + self.n_blocks = n_blocks + # RGB mean for DIV2K + rgb_mean = (0.4488, 0.4371, 0.4040) + self.sub_mean = MeanShift(rgb_mean, True, rgb_range) + # define head module + modules_head = [EasyConv2d(channel, n_feats, 3)] + # define body module + modules_body = nn.ModuleList() + for i in range(n_blocks): + modules_body.append(MSRB(n_feats=n_feats)) + # define tail module + modules_tail = [ + EasyConv2d(n_feats * (self.n_blocks + 1), n_feats, 1), + EasyConv2d(n_feats, n_feats, 3), + Upsample(n_feats, scale), + EasyConv2d(n_feats, channel, 3)] + + self.add_mean = MeanShift(rgb_mean, False, rgb_range) + self.head = nn.Sequential(*modules_head) + self.body = nn.Sequential(*modules_body) + self.tail = nn.Sequential(*modules_tail) + + def forward(self, x): + x = self.sub_mean(x) + x = self.head(x) + res = x + + MSRB_out = [] + for i in range(self.n_blocks): + x = self.body[i](x) + MSRB_out.append(x) + MSRB_out.append(res) + + res = torch.cat(MSRB_out, 1) + x = self.tail(res) + x = self.add_mean(x) + return x + + +class MSRN(L1Optimizer): + def __init__(self, scale, channel, n_feats=64, n_blocks=8, rgb_range=255, + **kwargs): + self.rgb_range = rgb_range + self.msrn = Msrn(channel, scale, n_feats, n_blocks, rgb_range) + super(MSRN, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + return self.msrn(x * self.rgb_range) / self.rgb_range diff --git a/VSR/Backend/Torch/Models/NTIRE19.py b/VSR/Backend/Torch/Models/NTIRE19.py index 9c15c5e..d3e223b 100644 --- a/VSR/Backend/Torch/Models/NTIRE19.py +++ b/VSR/Backend/Torch/Models/NTIRE19.py @@ -3,59 +3,21 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/4/16 -import torch -import torch.nn.functional as F - from VSR.Util.Config import Config -from .Model import SuperResolution -from .ntire19 import denoise, edrn, frn, ran2 -from ..Util import Metrics, Utility - - -class L1Optimizer(SuperResolution): - def __init__(self, channel, scale=1): - super(L1Optimizer, self).__init__(scale, channel) - - def fn(self, x): - raise NotImplementedError - - def train(self, inputs, labels, learning_rate=None): - sr = self.fn(inputs[0]) - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - _lr = inputs[0] - lr = Utility.pad_if_divide(_lr, 32) - a = lr.size(2) - _lr.size(2) - b = lr.size(3) - _lr.size(3) - slice_h = slice(None) if a == 0 else slice(a // 2, -a // 2) - slice_w = slice(None) if b == 0 else slice(b // 2, -b // 2) - sr = self.fn(lr)[..., slice_h, slice_w] - sr = sr.cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics +from .Contrib.ntire19 import denoise, edrn, frn, ran2 +from .Optim.SISR import L1Optimizer class EDRN(L1Optimizer): """EDRN is one candidate of NTIRE19 RSR""" def __init__(self, scale, channel, **kwargs): - super(EDRN, self).__init__(channel=channel, scale=scale) args = Config(kwargs) args.scale = [scale] args.n_colors = channel self.rgb_range = args.rgb_range self.edrn = edrn.EDRN(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(EDRN, self).__init__(channel=channel, scale=scale, **kwargs) def fn(self, x): return self.edrn(x * self.rgb_range) / self.rgb_range @@ -63,13 +25,12 @@ def fn(self, x): class FRN(L1Optimizer): def __init__(self, scale, channel, **kwargs): - super(FRN, self).__init__(channel=channel, scale=scale) args = Config(kwargs) args.scale = [scale] args.n_colors = channel self.rgb_range = args.rgb_range self.frn = frn.FRN_UPDOWN(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(FRN, self).__init__(channel=channel, scale=scale, **kwargs) def fn(self, x): return self.frn(x * self.rgb_range) / self.rgb_range @@ -77,13 +38,12 @@ def fn(self, x): class RAN(L1Optimizer): def __init__(self, scale, channel, **kwargs): - super(RAN, self).__init__(channel=channel, scale=scale) args = Config(kwargs) args.scale = [scale] args.n_colors = channel self.rgb_range = args.rgb_range self.ran = ran2.RAN(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(RAN, self).__init__(channel=channel, scale=scale, **kwargs) def fn(self, x): return self.ran(x * self.rgb_range) / self.rgb_range @@ -91,9 +51,8 @@ def fn(self, x): class DIDN(L1Optimizer): def __init__(self, channel, filters, umodule, **kwargs): - super(DIDN, self).__init__(channel=channel) self.didn = denoise.EraserTeam.DIDN(channel, filters, umodule) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(DIDN, self).__init__(channel=channel, **kwargs) def fn(self, x): return self.didn(x) @@ -101,9 +60,8 @@ def fn(self, x): class DHDN(L1Optimizer): def __init__(self, channel, filters, **kwargs): - super(DHDN, self).__init__(channel=channel) self.dhdn = denoise.EraserTeam.DHDN(channel, filters) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(DHDN, self).__init__(channel=channel, **kwargs) def fn(self, x): return self.dhdn(x) @@ -111,9 +69,8 @@ def fn(self, x): class GRDN(L1Optimizer): def __init__(self, channel, filters, grdb, rdb, **kwargs): - super(GRDN, self).__init__(channel=channel) self.grdn = denoise.DGUTeam.GRDN(channel, filters, grdb, rdb) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(GRDN, self).__init__(channel=channel, **kwargs) def fn(self, x): return self.grdn(x) @@ -121,9 +78,8 @@ def fn(self, x): class ResUNet(L1Optimizer): def __init__(self, channel, filters, rb, **kwargs): - super(ResUNet, self).__init__(channel=channel) self.resunet = denoise.HITVPCTeam.ResUNet(channel, filters, rb) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + super(ResUNet, self).__init__(channel=channel, **kwargs) def fn(self, x): return self.resunet(x) diff --git a/VSR/Backend/Torch/Models/NTIRE20.py b/VSR/Backend/Torch/Models/NTIRE20.py index e69de29..e923f60 100644 --- a/VSR/Backend/Torch/Models/NTIRE20.py +++ b/VSR/Backend/Torch/Models/NTIRE20.py @@ -0,0 +1,54 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 5 - 28 + +import torch +import torch.nn.functional as F + +from .Contrib.ntire20.xiaozhong.ops import define_D, define_F, define_G +from .Model import SuperResolution +from ..Util import Metrics + + +class RealSR(SuperResolution): + """ + RealSR proposed by Xiaozhong Ji + See (NTIRE report, not full paper): https://arxiv.org/pdf/2005.01996.pdf + """ + + def __init__(self, channel=3, scale=4, nf=64, nb=23, **kwargs): + super(RealSR, self).__init__(channel=channel, scale=scale) + self.weights = [ + kwargs.get('pixel_weight', 1), + kwargs.get('feature_weight', 0), + kwargs.get('gan_weight', 0) + ] + self.realsr_g = define_G(in_nc=channel, out_nc=channel, nf=nf, nb=nb) + self.opt_g = torch.optim.Adam(self.trainable_variables('realsr_g'), 1e-4, + betas=(0.5, 0.999)) + if self.weights[1] > 0: + self.feature_net = define_F() # for feature loss + if self.weights[2] > 0: + self.realsr_d = define_D(in_nc=channel, nf=nf, nlayers=3) + self.opt_d = torch.optim.Adam(self.trainable_variables('realsr_d'), 1e-4, + betas=(0.5, 0.999)) + + def train(self, inputs, labels, learning_rate=None): + sr = self.realsr_g(inputs[0]) + pixel_loss = F.l1_loss(sr, labels[0]) * self.weights[0] + loss = pixel_loss + if learning_rate: + for param_group in self.opt.param_groups: + param_group["lr"] = learning_rate + self.opt_g.zero_grad() + loss.backward() + self.opt_g.step() + return {'l1': loss.detach().cpu().numpy()} + + def eval(self, inputs, labels=None, **kwargs): + metrics = {} + sr = self.realsr_g(inputs[0]).cpu().detach() + if labels is not None: + metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) + return [sr.numpy()], metrics diff --git a/VSR/Backend/Torch/Models/Ops/Blocks.py b/VSR/Backend/Torch/Models/Ops/Blocks.py new file mode 100644 index 0000000..3c69518 --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/Blocks.py @@ -0,0 +1,428 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + +import math + +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.nn import Parameter +from torch.nn import functional as F +from torch.nn.modules.utils import _pair + +from VSR.Util.Utility import to_list + + +class MeanShift(nn.Conv2d): + def __init__(self, mean_rgb, sub, rgb_range=1.0): + super(MeanShift, self).__init__(3, 3, 1) + sign = -1 if sub else 1 + self.weight.data = torch.eye(3).view(3, 3, 1, 1) + self.bias.data = torch.Tensor(mean_rgb) * sign * rgb_range + # Freeze the mean shift layer + for params in self.parameters(): + params.requires_grad = False + + +class Activation(nn.Module): + def __init__(self, act, **kwargs): + super(Activation, self).__init__() + if act is None: + self.f = lambda t: t + if isinstance(act, str): + self.name = act.lower() + in_place = kwargs.get('in_place', True) + if self.name == 'relu': + self.f = nn.ReLU(in_place) + elif self.name == 'prelu': + self.f = nn.PReLU(num_parameters=kwargs.get('num_parameters', 1), + init=kwargs.get('init', 0.25)) + elif self.name in ('lrelu', 'leaky', 'leakyrelu'): + self.f = nn.LeakyReLU(negative_slope=kwargs.get('negative_slope', 1e-2), + inplace=in_place) + elif self.name == 'tanh': + self.f = nn.Tanh() + elif self.name == 'sigmoid': + self.f = nn.Sigmoid() + elif callable(act): + self.f = act + + def forward(self, x): + return self.f(x) + + +class EasyConv2d(nn.Module): + """ Convolution maker, to construct commonly used conv block with default + configurations. + + Support to build Conv2D, ConvTransposed2D, along with selectable normalization + and activations. + Support normalization: + - Batchnorm2D + - Spectralnorm2D + Support activation: + - Relu + - PRelu + - LeakyRelu + - Tanh + - Sigmoid + - Customized callable functions + + Args: + in_channels (int): Number of channels in the input image + out_channels (int): Number of channels produced by the convolution + kernel_size (int or tuple): Size of the convolving kernel + stride (int or tuple, optional): Stride of the convolution. Default: 1 + padding (str, optional): 'same' means $out_size=in_size // stride$ or + $out_size=in_size * stride$ (ConvTransposed); + 'valid' means padding zero. + dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 + groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 + use_bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` + use_bn (bool, optional): If ``True``, adds Batchnorm2D module to the output. + use_sn (bool, optional): If ``True``, adds Spectralnorm2D module to the output. + transposed (bool, optional): If ``True``, use ConvTransposed instead of Conv2D. + """ + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, + padding='same', dilation=1, groups=1, activation=None, + use_bias=True, use_bn=False, use_sn=False, transposed=False, + **kwargs): + super(EasyConv2d, self).__init__() + padding = padding.lower() + assert padding in ('same', 'valid') + if transposed: + assert padding == 'same' + q = kernel_size % 2 # output padding + p = (kernel_size + q - stride) // 2 # padding + net = [nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, + p, q, groups, use_bias, dilation)] + else: + if padding == 'same': + padding_ = (dilation * (kernel_size - 1) - stride + 2) // 2 + else: + padding_ = 0 + net = [nn.Conv2d(in_channels, out_channels, kernel_size, stride, + padding_, dilation, groups, use_bias)] + if use_sn: + net[0] = nn.utils.spectral_norm(net[0]) + if use_bn: + net += [nn.BatchNorm2d( + out_channels, + eps=kwargs.get('eps', 1e-5), + momentum=kwargs.get('momentum', 0.1), + affine=kwargs.get('affine', True), + track_running_stats=kwargs.get('track_running_stats', True))] + if activation: + net += [Activation(activation, in_place=True, **kwargs)] + self.body = nn.Sequential(*net) + + def forward(self, x): + return self.body(x) + + def initialize_(self, kernel, bias=None): + """initialize the convolutional weights from external sources + + Args: + kernel: kernel weight. Shape=[OUT, IN, K, K] + bias: bias weight. Shape=[OUT] + """ + + dtype = self.body[0].weight.dtype + device = self.body[0].weight.device + kernel = torch.tensor(kernel, dtype=dtype, device=device, + requires_grad=True) + assert kernel.shape == self.body[0].weight.shape, "Wrong kernel shape!" + if bias is not None: + bias = torch.tensor(bias, dtype=dtype, device=device, requires_grad=True) + assert bias.shape == self.body[0].bias.shape, "Wrong bias shape!" + self.body[0].weight.data.copy_(kernel) + self.body[0].bias.data.copy_(bias) + + +class RB(nn.Module): + def __init__(self, in_channels, out_channels=None, kernel_size=3, + activation=None, use_bias=True, use_bn=False, use_sn=False, + act_first=None): + super(RB, self).__init__() + if out_channels is None: + out_channels = in_channels + conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, 1, + kernel_size // 2, bias=use_bias) + conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, 1, + kernel_size // 2, bias=use_bias) + if use_sn: + conv1 = nn.utils.spectral_norm(conv1) + conv2 = nn.utils.spectral_norm(conv2) + net = [conv1, Activation(activation, in_place=True), conv2] + if use_bn: + net.insert(1, nn.BatchNorm2d(out_channels)) + if act_first: + net = [nn.BatchNorm2d(in_channels), + Activation(activation, in_place=True)] + net + else: + net.append(nn.BatchNorm2d(out_channels)) + self.body = nn.Sequential(*net) + if in_channels != out_channels: + self.shortcut = nn.Conv2d(in_channels, out_channels, 1) + + def forward(self, x): + out = self.body(x) + if hasattr(self, 'shortcut'): + sc = self.shortcut(x) + return out + sc + return out + x + + +class Rdb(nn.Module): + def __init__(self, channels, filters, depth=3, scaling=1.0, + name='Rdb', **kwargs): + super(Rdb, self).__init__() + self.name = name + self.depth = depth + self.scaling = scaling + for i in range(depth): + conv = EasyConv2d(channels + filters * i, filters, **kwargs) + setattr(self, f'conv_{i}', conv) + # no activation after last layer + try: + kwargs.pop('activation') + except KeyError: + pass + conv = EasyConv2d(channels + filters * (depth - 1), channels, **kwargs) + setattr(self, f'conv_{depth - 1}', conv) + + def forward(self, inputs): + fl = [inputs] + for i in range(self.depth): + conv = getattr(self, f'conv_{i}') + fl.append(conv(torch.cat(fl, dim=1))) + return fl[-1] * self.scaling + inputs + + def extra_repr(self): + return f"{self.name}: depth={self.depth}, scaling={self.scaling}" + + +class Rrdb(nn.Module): + """ + Residual in Residual Dense Block + """ + + def __init__(self, nc, gc=32, depth=5, scaling=1.0, **kwargs): + super(Rrdb, self).__init__() + self.RDB1 = Rdb(nc, gc, depth, scaling, **kwargs) + self.RDB2 = Rdb(nc, gc, depth, scaling, **kwargs) + self.RDB3 = Rdb(nc, gc, depth, scaling, **kwargs) + self.scaling = scaling + + def forward(self, x): + out = self.RDB1(x) + out = self.RDB2(out) + out = self.RDB3(out) + return out.mul(self.scaling) + x + + +class Rcab(nn.Module): + def __init__(self, channels, ratio=16, name='RCAB', **kwargs): + super(Rcab, self).__init__() + self.name = name + self.ratio = ratio + in_c, out_c = to_list(channels, 2) + ks = kwargs.get('kernel_size', 3) + padding = kwargs.get('padding', ks // 2) + group = kwargs.get('group', 1) + bias = kwargs.get('bias', True) + self.c1 = nn.Sequential( + nn.Conv2d(in_c, out_c, ks, 1, padding, 1, group, bias), + nn.ReLU(True)) + self.c2 = nn.Conv2d(out_c, out_c, ks, 1, padding, 1, group, bias) + self.c3 = nn.Sequential( + nn.Conv2d(out_c, out_c // ratio, 1, groups=group, bias=bias), + nn.ReLU(True)) + self.c4 = nn.Sequential( + nn.Conv2d(out_c // ratio, in_c, 1, groups=group, bias=bias), + nn.Sigmoid()) + self.pooling = nn.AdaptiveAvgPool2d(1) + + def forward(self, inputs): + x = self.c1(inputs) + y = self.c2(x) + x = self.pooling(y) + x = self.c3(x) + x = self.c4(x) + y = x * y + return inputs + y + + def extra_repr(self): + return f"{self.name}: ratio={self.ratio}" + + +class CascadeRdn(nn.Module): + def __init__(self, channels, filters, depth=3, use_ca=False, + name='CascadeRdn', **kwargs): + super(CascadeRdn, self).__init__() + self.name = name + self.depth = to_list(depth, 2) + self.ca = use_ca + for i in range(self.depth[0]): + setattr(self, f'conv11_{i}', + nn.Conv2d(channels + filters * (i + 1), filters, 1)) + setattr(self, f'rdn_{i}', Rdb(channels, filters, self.depth[1], **kwargs)) + if use_ca: + setattr(self, f'rcab_{i}', Rcab(channels)) + + def forward(self, inputs): + fl = [inputs] + x = inputs + for i in range(self.depth[0]): + rdn = getattr(self, f'rdn_{i}') + x = rdn(x) + if self.ca: + rcab = getattr(self, f'rcab_{i}') + x = rcab(x) + fl.append(x) + c11 = getattr(self, f'conv11_{i}') + x = c11(torch.cat(fl, dim=1)) + + return x + + def extra_repr(self): + return f"{self.name}: depth={self.depth}, ca={self.ca}" + + +class CBAM(nn.Module): + """Convolutional Block Attention Module (ECCV 18) + - CA: channel attention module + - SA: spatial attention module + + Args: + channels: input channel of tensors + channel_reduction: reduction ratio in `CA` + spatial_first: put SA ahead of CA (default: CA->SA) + """ + + class CA(nn.Module): + def __init__(self, channels, ratio=16): + super(CBAM.CA, self).__init__() + self.max_pool = nn.AdaptiveMaxPool2d(1) + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.mlp = nn.Sequential( + nn.Conv2d(channels, channels // ratio, 1), + nn.ReLU(), + nn.Conv2d(channels // ratio, channels, 1)) + + def forward(self, x): + maxpool = self.max_pool(x) + avgpool = self.avg_pool(x) + att = F.sigmoid(self.mlp(maxpool) + self.mlp(avgpool)) + return att * x + + class SA(nn.Module): + def __init__(self, kernel_size=7): + super(CBAM.SA, self).__init__() + self.conv = nn.Conv2d(2, 1, kernel_size, 1, kernel_size // 2) + + def forward(self, x): + max_c_pool = x.max(dim=1, keepdim=True) + avg_c_pool = x.mean(dim=1, keepdim=True) + y = torch.cat([max_c_pool, avg_c_pool], dim=1) + att = F.sigmoid(self.conv(y)) + return att * x + + def __init__(self, channels, channel_reduction=16, spatial_first=None): + super(CBAM, self).__init__() + self.channel_attention = CBAM.CA(channels, ratio=channel_reduction) + self.spatial_attention = CBAM.SA(7) + self.spatial_first = spatial_first + + def forward(self, inputs): + if self.spatial_first: + x = self.spatial_attention(inputs) + return self.channel_attention(x) + else: + x = self.channel_attention(inputs) + return self.spatial_attention(x) + + +class Conv2dLSTMCell(nn.Module): + """ConvLSTM cell. + Copied from https://gist.github.com/Kaixhin/57901e91e5c5a8bac3eb0cbbdd3aba81 + Special thanks to @Kaixhin + """ + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, + padding=0, dilation=1, groups=1, bias=True): + super(Conv2dLSTMCell, self).__init__() + if in_channels % groups != 0: + raise ValueError('in_channels must be divisible by groups') + if out_channels % groups != 0: + raise ValueError('out_channels must be divisible by groups') + kernel_size = _pair(kernel_size) + stride = _pair(stride) + padding = _pair(padding) + dilation = _pair(dilation) + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.padding_h = tuple( + k // 2 for k, s, p, d in zip(kernel_size, stride, padding, dilation)) + self.dilation = dilation + self.groups = groups + self.weight_ih = Parameter( + torch.Tensor(4 * out_channels, in_channels // groups, *kernel_size)) + self.weight_hh = Parameter( + torch.Tensor(4 * out_channels, out_channels // groups, *kernel_size)) + self.weight_ch = Parameter( + torch.Tensor(3 * out_channels, out_channels // groups, *kernel_size)) + if bias: + self.bias_ih = Parameter(torch.Tensor(4 * out_channels)) + self.bias_hh = Parameter(torch.Tensor(4 * out_channels)) + self.bias_ch = Parameter(torch.Tensor(3 * out_channels)) + else: + self.register_parameter('bias_ih', None) + self.register_parameter('bias_hh', None) + self.register_parameter('bias_ch', None) + self.register_buffer('wc_blank', torch.zeros(out_channels)) + self.reset_parameters() + + def reset_parameters(self): + n = 4 * self.in_channels + for k in self.kernel_size: + n *= k + stdv = 1. / math.sqrt(n) + self.weight_ih.data.uniform_(-stdv, stdv) + self.weight_hh.data.uniform_(-stdv, stdv) + self.weight_ch.data.uniform_(-stdv, stdv) + if self.bias_ih is not None: + self.bias_ih.data.uniform_(-stdv, stdv) + self.bias_hh.data.uniform_(-stdv, stdv) + self.bias_ch.data.uniform_(-stdv, stdv) + + def forward(self, input, hx): + h_0, c_0 = hx + + wx = F.conv2d(input, self.weight_ih, self.bias_ih, self.stride, + self.padding, self.dilation, self.groups) + wh = F.conv2d(h_0, self.weight_hh, self.bias_hh, self.stride, + self.padding_h, self.dilation, self.groups) + # Cell uses a Hadamard product instead of a convolution? + wc = F.conv2d(c_0, self.weight_ch, self.bias_ch, self.stride, + self.padding_h, self.dilation, self.groups) + v = Variable(self.wc_blank).reshape((1, -1, 1, 1)) + wxhc = wx + wh + torch.cat((wc[:, :2 * self.out_channels], + v.expand(wc.size(0), wc.size(1) // 3, + wc.size(2), wc.size(3)), + wc[:, 2 * self.out_channels:]), 1) + + i = torch.sigmoid(wxhc[:, :self.out_channels]) + f = torch.sigmoid(wxhc[:, self.out_channels:2 * self.out_channels]) + g = torch.tanh(wxhc[:, 2 * self.out_channels:3 * self.out_channels]) + o = torch.sigmoid(wxhc[:, 3 * self.out_channels:]) + + c_1 = f * c_0 + i * g + h_1 = o * torch.tanh(c_1) + return h_1, (h_1, c_1) diff --git a/VSR/Backend/Torch/Models/Discriminator.py b/VSR/Backend/Torch/Models/Ops/Discriminator.py similarity index 56% rename from VSR/Backend/Torch/Models/Discriminator.py rename to VSR/Backend/Torch/Models/Ops/Discriminator.py index 5624fe0..5c8b80d 100644 --- a/VSR/Backend/Torch/Models/Discriminator.py +++ b/VSR/Backend/Torch/Models/Ops/Discriminator.py @@ -1,21 +1,27 @@ -# Copyright (c): Wenyi Tang 2017-2019. +# Copyright (c) 2017-2020 Wenyi Tang. # Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/25 下午4:08 +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 from torch import nn -from .Arch import EasyConv2d, RB, Activation + +from .Blocks import Activation, EasyConv2d, RB def _pull_conv_args(**kwargs): - f = kwargs.get('filters', 64) - ks = kwargs.get('kernel_size', 3) - activation = kwargs.get('activation', 'leaky') - bias = kwargs.get('bias', True) - norm = kwargs.get('norm', '') + def _get_and_pop(d: dict, key, default=None): + if key in d: + return d.pop(key) + return d.get(key, default) + + f = _get_and_pop(kwargs, 'filters', 64) + ks = _get_and_pop(kwargs, 'kernel_size', 3) + activation = _get_and_pop(kwargs, 'activation', 'leaky') + bias = _get_and_pop(kwargs, 'bias', True) + norm = _get_and_pop(kwargs, 'norm', '') bn = norm.lower() in ('bn', 'batch') sn = norm.lower() in ('sn', 'spectral') - return f, ks, activation, bias, bn, sn + return f, ks, activation, bias, bn, sn, kwargs class DCGAN(nn.Module): @@ -37,39 +43,40 @@ class DCGAN(nn.Module): favor 'A' and $n_{strided}=num_layers - 1$ in favor 'B'. """ - def __init__(self, channel, num_layers, norm=None, favor='A', **kwargs): + def __init__(self, channel, num_layers, scale=4, norm=None, favor='A', + **kwargs): super(DCGAN, self).__init__() - f, ks, act, bias, bn, sn = _pull_conv_args(norm=norm, **kwargs) + f, ks, act, bias, bn, sn, unparsed = _pull_conv_args(norm=norm, **kwargs) net = [EasyConv2d(channel, f, ks, activation=act, use_bn=bn, use_sn=sn, - use_bias=bias)] + use_bias=bias, negative_slope=0.2)] self.n_strided = 0 counter = 1 assert favor in ('A', 'B', 'C'), "favor must be A | B | C" while True: f *= 2 net.append(EasyConv2d( - f // 2, f, ks + 1, 2, activation=act, use_bias=bias, use_bn=bn, - use_sn=sn)) + f // 2, f, ks + 1, 2, activation=act, use_bias=bias, use_bn=bn, + use_sn=sn, **unparsed)) self.n_strided += 1 counter += 1 if counter >= num_layers: break if favor in ('A', 'C'): net.append(EasyConv2d( - f, f, ks, 1, activation=act, use_bias=bias, use_bn=bn, - use_sn=sn)) + f, f, ks, 1, activation=act, use_bias=bias, use_bn=bn, + use_sn=sn, **unparsed)) counter += 1 if counter >= num_layers: break if favor == 'C': self.body = nn.Sequential(*net, nn.AdaptiveAvgPool2d(1)) linear = [nn.Linear(f, 100, bias), - Activation(act, in_place=True), + Activation(act, in_place=True, **unparsed), nn.Linear(100, 1, bias)] else: self.body = nn.Sequential(*net) - linear = [nn.Linear(f * 4 * 4, 100, bias), - Activation(act, in_place=True), + linear = [nn.Linear(f * scale * scale, 100, bias), + Activation(act, in_place=True, **unparsed), nn.Linear(100, 1, bias)] if sn: linear[0] = nn.utils.spectral_norm(linear[0]) @@ -102,16 +109,16 @@ class Residual(nn.Module): def __init__(self, channel, num_residual, norm=None, favor='A', **kwargs): super(Residual, self).__init__() - f, ks, act, bias, bn, sn = _pull_conv_args(norm=norm, **kwargs) + f, ks, act, bias, bn, sn, unparsed = _pull_conv_args(norm=norm, **kwargs) net = [EasyConv2d(channel, f, ks, activation=act, use_bn=bn, use_sn=sn, - use_bias=bias)] + use_bias=bias, **unparsed)] for i in range(num_residual): net.append(RB(f, ks, act, bias, bn, sn, favor == 'A')) net.append(nn.AvgPool2d(2)) - net.append(Activation(act, in_place=True)) + net.append(Activation(act, in_place=True, **unparsed)) self.body = nn.Sequential(*net) linear = [nn.Linear(f * 4 * 4, 100, bias), - Activation(act, in_place=True), + Activation(act, in_place=True, **unparsed), nn.Linear(100, 1, bias)] if sn: linear[0] = nn.utils.spectral_norm(linear[0]) @@ -123,3 +130,36 @@ def forward(self, x): assert x.size(2) == x.size(3) == 4 * 2 ** self.n_strided y = self.body(x).flatten(1) return self.linear(y) + + +class PatchGAN(nn.Module): + """Defines a PatchGAN discriminator + Args: + channel: the number of channels in input images + num_layers: number of total cnn layers + norm: could be "None", "SN/Spectral" or "BN/Batch" + """ + + def __init__(self, channel, num_layers=3, norm=None, **kwargs): + super(PatchGAN, self).__init__() + f, ks, act, bias, bn, sn, unparsed = _pull_conv_args(norm=norm, **kwargs) + sequence = [ + EasyConv2d(channel, f, ks + 1, 2, activation=act, use_bn=bn, use_sn=sn, + use_bias=bias, **unparsed)] + in_c = f + out_c = f * 2 + for n in range(1, num_layers): + sequence.append( + EasyConv2d(in_c, out_c, ks + 1, 2, activation=act, use_bn=bn, + use_sn=sn, use_bias=bias, **unparsed)) + in_c = out_c + out_c *= 2 + sequence += [ + EasyConv2d(in_c, out_c, ks, activation=act, use_bn=bn, use_sn=sn, + use_bias=bias, **unparsed), + EasyConv2d(out_c, 1, 1) + ] + self.body = nn.Sequential(*sequence) + + def forward(self, x): + return self.body(x) diff --git a/VSR/Backend/Torch/Models/Ops/Distortion.py b/VSR/Backend/Torch/Models/Ops/Distortion.py new file mode 100644 index 0000000..74b0056 --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/Distortion.py @@ -0,0 +1,89 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + +import random + +import torch +import torch.nn as nn + +from VSR.Util.Math import gaussian_kernel +from ...Util.Utility import gaussian_noise, imfilter, poisson_noise + + +class Distorter(nn.Module): + """Randomly add the noise and blur of an image. + + Args: + gaussian_noise_std (float or tuple of float (min, max)): How much to + additive gaussian white noise. gaussian_noise_std is chosen uniformly + from [0, std] or the given [min, max]. Should be non negative numbers. + poisson_noise_std (float or tuple of float (min, max)): How much to + poisson noise. poisson_noise_std is chosen uniformly from [0, std] or + the given [min, max]. Should be non negative numbers. + gaussian_blur_std (float or tuple of float (min, max)): How much to + blur kernel. gaussian_blur_std is chosen uniformly from [0, std] or + the given [min, max]. Should be non negative numbers. + """ + + def __init__(self, + gaussian_noise_std=0, + poisson_noise_std=0, + gaussian_blur_std=0): + super(Distorter, self).__init__() + self.awgn = self._check_input(gaussian_noise_std, 'awgn', center=0, + bound=(0, 75 / 255), clip_first_on_zero=True) + self.poisson = self._check_input(poisson_noise_std, 'poisson', center=0, + bound=(0, 50 / 255), + clip_first_on_zero=True) + self.blur = self._check_input(gaussian_blur_std, 'blur', center=0) + self.blur_padding = nn.ReflectionPad2d(7) + + def _check_input(self, value, name, center=1, bound=(0, float('inf')), + clip_first_on_zero=True): + if isinstance(value, (tuple, list)) and len(value) == 2: + if not bound[0] <= value[0] <= value[1] <= bound[1]: + raise ValueError("{} values should be between {}".format(name, bound)) + else: + if value < 0: + raise ValueError( + "If {} is a single number, it must be non negative.".format(name)) + value = [center - value, center + value] + if clip_first_on_zero: + value[0] = max(value[0], 0) + # if value is 0 or (1., 1.) for brightness/contrast/saturation + # or (0., 0.) for hue, do nothing + if value[0] == value[1] == center: + value = None + return value + + def forward(self, img): + factors = [] + # noise & blur + blur_factor = 0 + if self.blur is not None: + blur_factor = random.uniform(*self.blur) + img = imfilter( + img, + torch.tensor(gaussian_kernel(15, blur_factor), + device=img.device), + self.blur_padding) + awgn_factor = (0, 0, 0) + if self.awgn is not None: + _r = random.uniform(*self.awgn) + _g = random.uniform(*self.awgn) + _b = random.uniform(*self.awgn) + img += gaussian_noise(img, stddev=(_r, _g, _b)) + awgn_factor = (_r, _g, _b) + poisson_factor = (_r, _g, _b) + if self.poisson is not None: + _r = random.uniform(*self.poisson) + _g = random.uniform(*self.poisson) + _b = random.uniform(*self.poisson) + img += poisson_noise(img, stddev=(_r, _g, _b)) + poisson_factor = (_r, _g, _b) + fac = [blur_factor, *awgn_factor, *poisson_factor] + factors.append(torch.tensor(fac)) + img = img.clamp(0, 1) + return img, torch.stack(factors).to(img.device) diff --git a/VSR/Backend/Torch/Models/Ops/Initializer.py b/VSR/Backend/Torch/Models/Ops/Initializer.py new file mode 100644 index 0000000..ce8e011 --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/Initializer.py @@ -0,0 +1,5 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + diff --git a/VSR/Backend/Torch/Models/Loss.py b/VSR/Backend/Torch/Models/Ops/Loss.py similarity index 78% rename from VSR/Backend/Torch/Models/Loss.py rename to VSR/Backend/Torch/Models/Ops/Loss.py index 30849dd..a05120a 100644 --- a/VSR/Backend/Torch/Models/Loss.py +++ b/VSR/Backend/Torch/Models/Ops/Loss.py @@ -1,7 +1,7 @@ -# Copyright (c): Wenyi Tang 2017-2019. +# Copyright (c) 2017-2020 Wenyi Tang. # Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/9 下午2:41 +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 16 import torch import torchvision @@ -56,17 +56,45 @@ def rgan_bce_loss(x, y, x_real_than_y: bool = True): def ragan_bce_loss(x, y, x_real_than_y: bool = True): """relativistic average GAN loss""" if x_real_than_y: - return F.binary_cross_entropy_with_logits(x - y.mean(1, keepdim=True), + return F.binary_cross_entropy_with_logits(x - y.mean(), torch.ones_like(x)) + \ - F.binary_cross_entropy_with_logits(y - x.mean(1, keepdim=True), + F.binary_cross_entropy_with_logits(y - x.mean(), torch.zeros_like(y)) else: - return F.binary_cross_entropy_with_logits(y - x.mean(1, keepdim=True), + return F.binary_cross_entropy_with_logits(y - x.mean(), torch.ones_like(x)) + \ - F.binary_cross_entropy_with_logits(x - y.mean(1, keepdim=True), + F.binary_cross_entropy_with_logits(x - y.mean(), torch.zeros_like(y)) +class GeneratorLoss(nn.Module): + def __init__(self, name='GAN'): + self.type = name + super(GeneratorLoss, self).__init__() + + def forward(self, x, y=None): + if self.type == 'RGAN': + return rgan_bce_loss(x, y, True) + elif self.type == 'RAGAN': + return ragan_bce_loss(x, y, True) + else: + return gan_bce_loss(x, True) + + +class DiscriminatorLoss(nn.Module): + def __init__(self, name='GAN'): + self.type = name + super(DiscriminatorLoss, self).__init__() + + def forward(self, x, y=None): + if self.type == 'RGAN': + return rgan_bce_loss(x, y, False) + elif self.type == 'RAGAN': + return ragan_bce_loss(x, y, False) + else: + return gan_bce_loss(x, False) + gan_bce_loss(y, True) + + class VggFeatureLoss(nn.Module): # layer name stick to keras model _LAYER_NAME = { diff --git a/VSR/Backend/Torch/Models/Ops/Motion.py b/VSR/Backend/Torch/Models/Ops/Motion.py new file mode 100644 index 0000000..9ad78dd --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/Motion.py @@ -0,0 +1,185 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + +import torch +from torch import nn +from torch.nn import functional as F + +from VSR.Util.Math import nd_meshgrid +from ...Util.Utility import irtranspose, transpose + + +class STN(nn.Module): + """Spatial transformer network. + For optical flow based frame warping. + + Args: + mode: sampling interpolation mode of `grid_sample` + padding_mode: can be `zeros` | `borders` + normalized: flow value is normalized to [-1, 1] or absolute value + """ + + def __init__(self, mode='bilinear', padding_mode='zeros', normalize=False): + super(STN, self).__init__() + self.mode = mode + self.padding_mode = padding_mode + self.norm = normalize + + def forward(self, inputs, u, v=None, gain=1): + batch = inputs.size(0) + device = inputs.device + mesh = nd_meshgrid(*inputs.shape[-2:], permute=[1, 0]) + mesh = torch.tensor(mesh, dtype=torch.float32, device=device) + mesh = mesh.unsqueeze(0).repeat_interleave(batch, dim=0) + # add flow to mesh + if v is None: + assert u.shape[1] == 2, "optical flow must have 2 channels" + _u, _v = u[:, 0], u[:, 1] + else: + _u, _v = u, v + if not self.norm: + # flow needs to normalize to [-1, 1] + h, w = inputs.shape[-2:] + _u = _u / w * 2 + _v = _v / h * 2 + flow = torch.stack([_u, _v], dim=-1) * gain + assert flow.shape == mesh.shape, \ + f"Shape mis-match: {flow.shape} != {mesh.shape}" + mesh = mesh + flow + return F.grid_sample(inputs, mesh, + mode=self.mode, padding_mode=self.padding_mode) + + +class STTN(nn.Module): + """Spatio-temporal transformer network. (ECCV 2018) + + Args: + transpose_ncthw: how input tensor be transposed to format NCTHW + mode: sampling interpolation mode of `grid_sample` + padding_mode: can be `zeros` | `borders` + normalize: flow value is normalized to [-1, 1] or absolute value + """ + + def __init__(self, transpose_ncthw=(0, 1, 2, 3, 4), + normalize=False, mode='bilinear', padding_mode='zeros'): + super(STTN, self).__init__() + self.normalized = normalize + self.mode = mode + self.padding_mode = padding_mode + self.t = transpose_ncthw + + def forward(self, inputs, d, u, v): + _error_msg = "STTN only works for 5D tensor but got {}D input!" + if inputs.dim() != 5: + raise ValueError(_error_msg.format(inputs.dim())) + device = inputs.device + batch, channel, t, h, w = (inputs.shape[i] for i in self.t) + mesh = nd_meshgrid(t, h, w, permute=[2, 1, 0]) + mesh = torch.tensor(mesh, dtype=torch.float32, device=device) + mesh = mesh.unsqueeze(0).repeat_interleave(batch, dim=0) + _d, _u, _v = d, u, v + if not self.normalized: + _d = d / t * 2 + _u = u / w * 2 + _v = v / h * 2 + st_flow = torch.stack([_u, _v, _d], dim=-1) + st_flow = st_flow.unsqueeze(1).repeat_interleave(t, dim=1) + assert st_flow.shape == mesh.shape, \ + f"Shape mis-match: {st_flow.shape} != {mesh.shape}" + mesh = mesh + st_flow + inputs = transpose(inputs, self.t) + warp = F.grid_sample(inputs, mesh, mode=self.mode, + padding_mode=self.padding_mode) + # STTN warps into a single frame + warp = warp[:, :, 0:1] + return irtranspose(warp, self.t) + + +class CoarseFineFlownet(nn.Module): + def __init__(self, channel): + """Coarse to fine flow estimation network + + Originally from paper "Real-Time Video Super-Resolution with Spatio-Temporal + Networks and Motion Compensation". + See Vespcn.py + """ + + super(CoarseFineFlownet, self).__init__() + in_c = channel * 2 + # Coarse Flow + conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) + conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) + conv3 = nn.Sequential(nn.Conv2d(24, 24, 5, 2, 2), nn.ReLU(True)) + conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) + conv5 = nn.Sequential(nn.Conv2d(24, 32, 3, 1, 1), nn.Tanh()) + up1 = nn.PixelShuffle(4) + self.coarse_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up1) + # Fine Flow + in_c = channel * 3 + 2 + conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) + conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) + conv3 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) + conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) + conv5 = nn.Sequential(nn.Conv2d(24, 8, 3, 1, 1), nn.Tanh()) + up2 = nn.PixelShuffle(2) + self.fine_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up2) + self.warp_c = STN(padding_mode='border') + + def forward(self, target, ref, gain=1): + """Estimate optical flow from `ref` frame to `target` frame""" + + flow_c = self.coarse_flow(torch.cat((ref, target), 1)) + wc = self.warp_c(ref, flow_c[:, 0], flow_c[:, 1]) + flow_f = self.fine_flow(torch.cat((ref, target, flow_c, wc), 1)) + flow_c + flow_f *= gain + return flow_f + + +class Flownet(nn.Module): + def __init__(self, channel): + """Flow estimation network + + Originally from paper "FlowNet: Learning Optical Flow with Convolutional + Networks" and adapted according to paper "Frame-Recurrent Video + Super-Resolution". + See Frvsr.py + + Args: + channel: input channels of each sequential frame + """ + + super(Flownet, self).__init__() + f = 32 + layers = [] + in_c = channel * 2 + for i in range(3): + layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] + layers += [nn.Conv2d(f, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] + layers += [nn.MaxPool2d(2)] + in_c = f + f *= 2 + for i in range(3): + layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] + layers += [nn.Conv2d(f, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] + layers += [ + nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)] + in_c = f + f //= 2 + layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] + layers += [nn.Conv2d(f, 2, 3, 1, 1), nn.Tanh()] + self.body = nn.Sequential(*layers) + + def forward(self, target, ref, gain=1): + """Estimate densely optical flow from `ref` to `target` + + Args: + target: frame A + ref: frame B + gain: a scalar multiplied to final flow map + """ + + x = torch.cat((target, ref), 1) + x = self.body(x) * gain + return x diff --git a/VSR/Backend/Torch/Models/Ops/Scale.py b/VSR/Backend/Torch/Models/Ops/Scale.py new file mode 100644 index 0000000..0563ac1 --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/Scale.py @@ -0,0 +1,160 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + +import torch.nn as nn +import torch.nn.functional as F + +from .Blocks import Activation, EasyConv2d + + +class _UpsampleNearest(nn.Module): + def __init__(self, scale): + super(_UpsampleNearest, self).__init__() + self.scale = scale + + def forward(self, x, scale=None): + scale = scale or self.scale + return F.interpolate(x, scale_factor=scale) + + +class _UpsampleLinear(nn.Module): + def __init__(self, scale): + super(_UpsampleLinear, self).__init__() + self._mode = ('linear', 'bilinear', 'trilinear') + self.scale = scale + + def forward(self, x, scale=None): + scale = scale or self.scale + mode = self._mode[x.dim() - 3] + return F.interpolate(x, scale_factor=scale, mode=mode, align_corners=False) + + +class Upsample(nn.Module): + def __init__(self, channel, scale, method='ps', name='Upsample', **kwargs): + super(Upsample, self).__init__() + self.name = name + self.channel = channel + self.scale = scale + self.method = method.lower() + self.group = kwargs.get('group', 1) + self.kernel_size = kwargs.get('kernel_size', 3) + + _allowed_methods = ('ps', 'nearest', 'deconv', 'linear') + assert self.method in _allowed_methods + act = kwargs.get('activation') + + samplers = [] + while scale > 1: + if scale % 2 == 1 or scale == 2: + samplers.append(self.upsampler(self.method, scale, act)) + break + else: + samplers.append(self.upsampler(self.method, 2, act)) + scale //= 2 + self.body = nn.Sequential(*samplers) + + def upsampler(self, method, scale, activation=None): + body = [] + k = self.kernel_size + if method == 'ps': + p = k // 2 # padding + s = 1 # strides + body = [nn.Conv2d(self.channel, self.channel * scale * scale, k, s, p, + groups=self.group), + nn.PixelShuffle(scale)] + if activation: + body.insert(1, Activation(activation)) + if method == 'deconv': + q = k % 2 # output padding + p = (k + q) // 2 - 1 # padding + s = scale # strides + body = [nn.ConvTranspose2d(self.channel, self.channel, k, s, p, q, + groups=self.group)] + if activation: + body.insert(1, Activation(activation)) + if method == 'nearest': + body = [_UpsampleNearest(scale), + nn.Conv2d(self.channel, self.channel, k, 1, k // 2, + groups=self.group)] + if activation: + body.append(Activation(activation)) + if method == 'linear': + body = [_UpsampleLinear(scale), + nn.Conv2d(self.channel, self.channel, k, 1, k // 2, + groups=self.group)] + if activation: + body.append(Activation(activation)) + return nn.Sequential(*body) + + def forward(self, x, **kwargs): + return self.body(x) + + def extra_repr(self): + return f"{self.name}: scale={self.scale}" + + +class MultiscaleUpsample(nn.Module): + def __init__(self, channel, scales=(2, 3, 4), **kwargs): + super(MultiscaleUpsample, self).__init__() + for i in scales: + self.__setattr__(f'up{i}', Upsample(channel, i, **kwargs)) + + def forward(self, x, scale): + return self.__getattr__(f'up{scale}')(x) + + +class SpaceToDim(nn.Module): + def __init__(self, scale_factor, dims=(-2, -1), dim=0): + super(SpaceToDim, self).__init__() + self.scale_factor = scale_factor + self.dims = dims + self.dim = dim + + def forward(self, x): + _shape = list(x.shape) + shape = _shape.copy() + dims = [x.dim() + self.dims[0] if self.dims[0] < 0 else self.dims[0], + x.dim() + self.dims[1] if self.dims[1] < 0 else self.dims[1]] + dims = [max(abs(dims[0]), abs(dims[1])), + min(abs(dims[0]), abs(dims[1]))] + if self.dim in dims: + raise RuntimeError("Integrate dimension can't be space dimension!") + shape[dims[0]] //= self.scale_factor + shape[dims[1]] //= self.scale_factor + shape.insert(dims[0] + 1, self.scale_factor) + shape.insert(dims[1] + 1, self.scale_factor) + dim = self.dim if self.dim < dims[1] else self.dim + 1 + dim = dim if dim <= dims[0] else dim + 1 + x = x.reshape(*shape) + perm = [dim, dims[1] + 1, dims[0] + 2] + perm = [i for i in range(min(perm))] + perm + perm.extend((i for i in range(x.dim()) if i not in perm)) + x = x.permute(*perm) + shape = _shape + shape[self.dim] *= self.scale_factor ** 2 + shape[self.dims[0]] //= self.scale_factor + shape[self.dims[1]] //= self.scale_factor + return x.reshape(*shape) + + def extra_repr(self): + return f'scale_factor={self.scale_factor}' + + +class SpaceToDepth(nn.Module): + def __init__(self, block_size): + super(SpaceToDepth, self).__init__() + self.body = SpaceToDim(block_size, dim=1) + + def forward(self, x): + return self.body(x) + + +class SpaceToBatch(nn.Module): + def __init__(self, block_size): + super(SpaceToBatch, self).__init__() + self.body = SpaceToDim(block_size, dim=0) + + def forward(self, x): + return self.body(x) diff --git a/VSR/Backend/Torch/Models/Ops/__init__.py b/VSR/Backend/Torch/Models/Ops/__init__.py new file mode 100644 index 0000000..ce8e011 --- /dev/null +++ b/VSR/Backend/Torch/Models/Ops/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 15 + diff --git a/VSR/Backend/Torch/Models/Optim/SISR.py b/VSR/Backend/Torch/Models/Optim/SISR.py new file mode 100644 index 0000000..ea10f6f --- /dev/null +++ b/VSR/Backend/Torch/Models/Optim/SISR.py @@ -0,0 +1,217 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 16 + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..Model import SuperResolution +from ..Ops.Discriminator import PatchGAN +from ..Ops.Loss import DiscriminatorLoss, GeneratorLoss, VggFeatureLoss +from ...Framework.Summary import get_writer +from ...Util import Metrics +from ...Util.Utility import pad_if_divide + + +def get_opt(opt_config, params, lr): + if opt_config is None: + return torch.optim.Adam(params, lr=lr) + if opt_config.get('name') == 'Adadelta': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.Adadelta(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'Adagrad': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.Adagrad(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'Adam': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.Adam(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'SparseAdam': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.SparseAdam(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'Adamax': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.Adamax(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'ASGD': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.ASGD(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'SGD': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.SGD(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'LBFGS': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.LBFGS(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'Rprop': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.Rprop(params, lr=lr, **kwargs) + elif opt_config.get('name') == 'RMSprop': + kwargs = opt_config + kwargs.pop('name') + return torch.optim.RMSprop(params, lr=lr, **kwargs) + + +def get_pix_cri(cri_config=None): + if cri_config is None: + return nn.L1Loss() + elif cri_config.get('name') == 'L1': + return nn.L1Loss() + elif cri_config.get('name') == 'L2': + return nn.MSELoss() + elif cri_config.get('name') == 'MSE': + return nn.MSELoss() + else: + return nn.L1Loss() + + +class L1Optimizer(SuperResolution): + def __init__(self, scale=1, channel=3, **kwargs): + super(L1Optimizer, self).__init__(scale, channel) + # gradient clip + self.clip = kwargs.get('clip') + # default use Adam with beta1=0.9 and beta2=0.999 + self.opt = get_opt(kwargs.get('opt'), self.trainable_variables(), 1e-4) + self.padding = kwargs.get('padding', 0) + + def fn(self, x): + raise NotImplementedError + + def train(self, inputs, labels, learning_rate=None): + sr = self.fn(inputs[0]) + loss = F.l1_loss(sr, labels[0]) + if learning_rate: + for param_group in self.opt.param_groups: + param_group["lr"] = learning_rate + self.opt.zero_grad() + loss.backward() + if self.clip: + torch.nn.utils.clip_grad_norm_(self.trainable_variables(), self.clip) + self.opt.step() + return {'l1': loss.detach().cpu().numpy()} + + def eval(self, inputs, labels=None, **kwargs): + metrics = {} + _lr = inputs[0] + if self.padding: + lr = pad_if_divide(_lr, self.padding) + a = lr.size(2) - _lr.size(2) + b = lr.size(3) - _lr.size(3) + slice_h = slice(None) if a == 0 else slice(a // 2, -a // 2) + slice_w = slice(None) if b == 0 else slice(b // 2, -b // 2) + sr = self.fn(lr)[..., slice_h, slice_w] + else: + sr = self.fn(_lr) + sr = sr.cpu().detach() + if labels is not None: + metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) + writer = get_writer(self.name) + if writer is not None: + step = kwargs.get('epoch') + writer.image('sr', sr.clamp(0, 1), max=1, step=step) + writer.image('gt', labels[0], max=1, step=step) + return [sr.numpy()], metrics + + def export(self, export_dir): + """An example of how to export ONNX format""" + + # ONNX needs input placeholder to export model! + # Sounds stupid to set a 48x48 inputs. + + name, model = self.modules.popitem(last=False) + device = list(model.parameters())[0].device + inputs = torch.randn(1, self.channel, 48, 48, device=device) + torch.onnx.export(model, (inputs,), export_dir / f'{name}.onnx') + + +class PerceptualOptimizer(L1Optimizer): + """Predefined optimizer framework for SISR task in name of `SRGAN` manner + + Implement `fn` function in subclass + """ + + def __init__(self, scale, channel, image_weight=1, feature_weight=0, + gan_weight=0, **kwargs): + super(PerceptualOptimizer, self).__init__(scale, channel, **kwargs) + self.use_vgg = feature_weight > 0 + self.use_gan = gan_weight > 0 + if self.use_vgg: + # tricks: do not save weights of vgg + feature_lists = kwargs.get('vgg_features', ['block5_conv4']) + self.feature = [VggFeatureLoss(feature_lists, True)] + if self.use_gan: + # define D-net + dnet = kwargs.get('discriminator', PatchGAN) + dnet_kw = kwargs.get('discriminator_kwargs', { + 'channel': channel, + 'num_layers': 3, + 'norm': 'BN', + 'activation': 'leaky', + 'negative_slope': 0.2, + }) + self.dnet = dnet(**dnet_kw) + self.optd = torch.optim.Adam(self.trainable_variables('dnet'), 1e-4) + # image, vgg, gan + self.w = [image_weight, feature_weight, gan_weight] + self.pixel_cri = get_pix_cri(kwargs.get('cri_image')) + self.gen_cri = GeneratorLoss(kwargs.get('cri_gan', 'GAN')) + self.disc_cri = DiscriminatorLoss(kwargs.get('cri_gan', 'GAN')) + + def cuda(self): + super(PerceptualOptimizer, self).cuda() + if self.use_vgg > 0: + self.feature[0].cuda() + + def train(self, inputs, labels, learning_rate=None): + sr = self.fn(inputs[0]) + for opt in self.opts.values(): + if learning_rate: + for param_group in opt.param_groups: + param_group["lr"] = learning_rate + image_loss = self.pixel_cri(sr, labels[0]) + loss = image_loss * self.w[0] + log = { + 'image_loss': image_loss.detach().cpu().numpy() + } + if self.use_vgg: + self.feature[0].eval() + feat_fake = self.feature[0](sr)[0] + feat_real = self.feature[0](labels[0])[0].detach() + feature_loss = self.pixel_cri(feat_fake, feat_real) + loss += feature_loss * self.w[1] + log.update(feature=feature_loss.detach().cpu().numpy()) + if self.use_gan: + for p in self.dnet.parameters(): + p.requires_grad = False + fake = self.dnet(sr) + real = self.dnet(labels[0]).detach() + gen_loss = self.gen_cri(fake, real) + loss += gen_loss * self.w[2] + log.update(gen=gen_loss.detach().cpu().numpy()) + # update G + self.opt.zero_grad() + loss.backward() + if self.clip: + clip = self.clip / learning_rate + torch.nn.utils.clip_grad_norm_(self.trainable_variables(), clip) + self.opt.step() + if self.use_gan: + # update D + for p in self.dnet.parameters(): + p.requires_grad = True + disc_fake = self.dnet(sr.detach()) + disc_real = self.dnet(labels[0]) + disc_loss = self.disc_cri(disc_fake, disc_real) + self.optd.zero_grad() + disc_loss.backward() + self.optd.step() + log.update(disc=disc_loss.detach().cpu().numpy()) + return log diff --git a/VSR/Backend/Torch/Models/Qprn.py b/VSR/Backend/Torch/Models/Qprn.py index 546e3c9..1f38609 100644 --- a/VSR/Backend/Torch/Models/Qprn.py +++ b/VSR/Backend/Torch/Models/Qprn.py @@ -9,12 +9,13 @@ import torchvision from torch import nn -from .Arch import CascadeRdn, Rdb, SpaceToDepth, Upsample from .Crdn import Upsample as RsrUp -from .Discriminator import DCGAN -from .Loss import gan_bce_loss, total_variance from .Model import SuperResolution -from .video.motion import STTN +from .Ops.Blocks import CascadeRdn, Rdb +from .Ops.Discriminator import DCGAN +from .Ops.Loss import gan_bce_loss, total_variance +from .Ops.Motion import STTN +from .Ops.Scale import SpaceToDepth, Upsample from ..Framework.Summary import get_writer from ..Framework.Trainer import SRTrainer, from_tensor, to_tensor from ..Util import Metrics @@ -25,19 +26,19 @@ class Fnet(nn.Module): def __init__(self, channel, L=2, gain=64): super(Fnet, self).__init__() self.lq_entry = nn.Sequential( - nn.Conv2d(channel * (L + 1), 16, 3, 1, 1), - SpaceToDepth(4), - nn.Conv2d(256, 64, 1, 1, 0), - Rdb(64), Rdb(64)) + nn.Conv2d(channel * (L + 1), 16, 3, 1, 1), + SpaceToDepth(4), + nn.Conv2d(256, 64, 1, 1, 0), + Rdb(64), Rdb(64)) self.hq_entry = nn.Sequential( - nn.Conv2d(channel * L, 16, 3, 1, 1), - SpaceToDepth(4), - nn.Conv2d(256, 64, 1, 1, 0), - Rdb(64), Rdb(64)) + nn.Conv2d(channel * L, 16, 3, 1, 1), + SpaceToDepth(4), + nn.Conv2d(256, 64, 1, 1, 0), + Rdb(64), Rdb(64)) self.flownet = nn.Sequential( - nn.Conv2d(128, 64, 1, 1, 0), - Rdb(64), Rdb(64), Upsample(64, 4), - nn.Conv2d(64, 3, 3, 1, 1), nn.Tanh()) + nn.Conv2d(128, 64, 1, 1, 0), + Rdb(64), Rdb(64), Upsample(64, 4), + nn.Conv2d(64, 3, 3, 1, 1), nn.Tanh()) gain = torch.as_tensor([L, gain, gain], dtype=torch.float32) self.gain = gain.reshape(1, 3, 1, 1) @@ -56,11 +57,11 @@ class Unet(nn.Module): def __init__(self, channel, N=2): super(Unet, self).__init__() self.entry = nn.Sequential( - nn.Conv2d(channel * N, 32, 3, 1, 1), - SpaceToDepth(2), - nn.Conv2d(128, 32, 1, 1, 0)) + nn.Conv2d(channel * N, 32, 3, 1, 1), + SpaceToDepth(2), + nn.Conv2d(128, 32, 1, 1, 0)) self.exit = nn.Sequential( - Upsample(32, 2), nn.Conv2d(32, channel, 3, 1, 1)) + Upsample(32, 2), nn.Conv2d(32, channel, 3, 1, 1)) self.down1 = nn.Conv2d(32, 64, 3, 2, 1) self.up1 = RsrUp([64, 32]) self.cb = CascadeRdn(64, 3, True) @@ -110,7 +111,7 @@ def __init__(self, gain, scale, channel, **kwargs): self.qprn = Composer(channel, L=2, gain=gain) self.adam = torch.optim.Adam(self.trainable_variables('qprn'), 1e-4) if self.debug.gan: - self.dnet = DCGAN(channel * 4, 9, 'bn', 'A') + self.dnet = DCGAN(channel * 4, 9, scale, 'bn', 'A') self.adam_d = torch.optim.Adam(self.trainable_variables('dnet'), 1e-4) self._trainer = _Trainer @@ -240,8 +241,10 @@ def eval(self, inputs, labels=None, **kwargs): c = idr_lq.shape[-1] - idr_lq_.shape[-1] a, b = a // 2, -a // 2 c, d = c // 2, -c // 2 - if a == 0: a = b = None - if c == 0: c = d = None + if a == 0: + a = b = None + if c == 0: + c = d = None idr = self.qprn.refiner(idr_lq, idr_lq) length = self.qprn.L + 1 windows = { @@ -265,7 +268,7 @@ def eval(self, inputs, labels=None, **kwargs): windows['predict'].append(hq_warp.detach().cpu().numpy()[..., a:b, c:d]) elif self.debug.get('see_flow'): windows['predict'].append(torch.stack( - flow[1:], dim=1).detach().cpu().numpy()[..., a:b, c:d]) + flow[1:], dim=1).detach().cpu().numpy()[..., a:b, c:d]) else: windows['predict'].append(hq.detach().cpu().numpy()[..., a:b, c:d]) time_loss += F.mse_loss(hq, hq_warp).detach() diff --git a/VSR/Backend/Torch/Models/Rbpn.py b/VSR/Backend/Torch/Models/Rbpn.py index 350d471..5815ed1 100644 --- a/VSR/Backend/Torch/Models/Rbpn.py +++ b/VSR/Backend/Torch/Models/Rbpn.py @@ -3,32 +3,124 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/5/26 下午3:24 +import logging + import torch import torch.nn.functional as F from torch import nn -from .Loss import total_variance +from .Dbpn import Dbpn, DownBlock, UpBlock from .Model import SuperResolution -from .frvsr.ops import FNet -from .rbpn.ops import Rbpn -from .video.motion import STN +from .Ops.Blocks import EasyConv2d, RB +from .Ops.Loss import total_variance +from .Ops.Motion import Flownet, STN from ..Framework.Summary import get_writer from ..Util.Metrics import psnr from ..Util.Utility import pad_if_divide, upsample +_logger = logging.getLogger("VSR.RBPN") +_logger.info("LICENSE: RBPN is implemented by M. Haris, et. al. @alterzero") +_logger.warning( + "I use unsupervised flownet to estimate optical flow, rather than pyflow module.") + + +class DbpnS(nn.Module): + def __init__(self, scale, base_filter, feat, num_stages): + super(DbpnS, self).__init__() + kernel, stride = Dbpn.get_kernel_stride(scale) + # Initial Feature Extraction + self.feat1 = EasyConv2d(base_filter, feat, 1, activation='prelu') + # Back-projection stages + for i in range(num_stages): + self.__setattr__(f'up{i}', UpBlock(feat, kernel, stride)) + if i < num_stages - 1: + # not the last layer + self.__setattr__(f'down{i}', DownBlock(feat, kernel, stride)) + self.num_stages = num_stages + # Reconstruction + self.output_conv = EasyConv2d(feat * num_stages, feat, 1) + + def forward(self, x): + x = self.feat1(x) + h1 = [self.__getattr__('up0')(x)] + d1 = [] + for i in range(self.num_stages): + d1.append(self.__getattr__(f'down{i}')(h1[-1])) + h1.append(self.__getattr__(f'up{i + 1}')(d1[-1])) + x = self.output_conv(torch.cat(h1, 1)) + return x + + +class Rbpn(nn.Module): + def __init__(self, channel, scale, base_filter, feat, n_resblock, + nFrames): + super(Rbpn, self).__init__() + self.nFrames = nFrames + kernel, stride = Dbpn.get_kernel_stride(scale) + # Initial Feature Extraction + self.feat0 = EasyConv2d(channel, base_filter, 3, activation='prelu') + self.feat1 = EasyConv2d(8, base_filter, 3, activation='prelu') + ###DBPNS + self.DBPN = DbpnS(scale, base_filter, feat, 3) + # Res-Block1 + modules_body1 = [RB(base_filter, kernel_size=3, activation='prelu') for _ in + range(n_resblock)] + modules_body1.append( + EasyConv2d(base_filter, feat, kernel, stride, activation='prelu', + transposed=True)) + self.res_feat1 = nn.Sequential(*modules_body1) + # Res-Block2 + modules_body2 = [RB(feat, kernel_size=3, activation='prelu') for _ in + range(n_resblock)] + modules_body2.append(EasyConv2d(feat, feat, 3, activation='prelu')) + self.res_feat2 = nn.Sequential(*modules_body2) + # Res-Block3 + modules_body3 = [RB(feat, kernel_size=3, activation='prelu') for _ in + range(n_resblock)] + modules_body3.append(EasyConv2d(feat, base_filter, kernel, stride, + activation='prelu')) + self.res_feat3 = nn.Sequential(*modules_body3) + # Reconstruction + self.output = EasyConv2d((nFrames - 1) * feat, channel, 3) + + def forward(self, x, neigbor, flow): + ### initial feature extraction + feat_input = self.feat0(x) + feat_frame = [] + for j in range(len(neigbor)): + feat_frame.append(self.feat1(torch.cat((x, neigbor[j], flow[j]), 1))) + + ####Projection + Ht = [] + for j in range(len(neigbor)): + h0 = self.DBPN(feat_input) + h1 = self.res_feat1(feat_frame[j]) + + e = h0 - h1 + e = self.res_feat2(e) + h = h0 + e + Ht.append(h) + feat_input = self.res_feat3(h) + + ####Reconstruction + out = torch.cat(Ht, 1) + output = self.output(out) + + return output + class Composer(nn.Module): def __init__(self, **kwargs): super(Composer, self).__init__() self.module = Rbpn(**kwargs) - self.fnet = FNet(kwargs['num_channels']) + self.fnet = Flownet(kwargs['num_channels']) self.warper = STN(padding_mode='border') def forward(self, target, neighbors): flows = [] warps = [] for i in neighbors: - flow = self.fnet(target, i) + flow = self.fnet(target, i, gain=32) warp = self.warper(i, flow[:, 0], flow[:, 1]) flows.append(flow) warps.append(warp) diff --git a/VSR/Backend/Torch/Models/Rcan.py b/VSR/Backend/Torch/Models/Rcan.py index ee3cf2d..0dfe77c 100644 --- a/VSR/Backend/Torch/Models/Rcan.py +++ b/VSR/Backend/Torch/Models/Rcan.py @@ -3,40 +3,75 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 +import logging + import torch +import torch.nn as nn import torch.nn.functional as F from .Model import SuperResolution -from .rcan import rcan +from .Optim.SISR import L1Optimizer +from .Ops.Blocks import EasyConv2d, MeanShift, Rcab +from .Ops.Scale import Upsample from ..Util import Metrics -from VSR.Util.Config import Config - - -class RCAN(SuperResolution): - - def __init__(self, scale, **kwargs): - super(RCAN, self).__init__(scale, 3) - args = Config(kwargs) - args.scale = [scale] - self.rgb_range = args.rgb_range - self.rcan = rcan.RCAN(args) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) - - def train(self, inputs, labels, learning_rate=None): - sr = self.rcan(inputs[0] * self.rgb_range) / self.rgb_range - loss = F.l1_loss(sr, labels[0]) - if learning_rate: - for param_group in self.opt.param_groups: - param_group["lr"] = learning_rate - self.opt.zero_grad() - loss.backward() - self.opt.step() - return {'l1': loss.detach().cpu().numpy()} - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - sr = self.rcan(inputs[0] * self.rgb_range) / self.rgb_range - sr = sr.cpu().detach() - if labels is not None: - metrics['psnr'] = Metrics.psnr(sr.numpy(), labels[0].cpu().numpy()) - return [sr.numpy()], metrics + +_logger = logging.getLogger("VSR.RCAN") +_logger.info("LICENSE: RCAN is implemented by Yulun Zhang. " + "@yulunzhang https://github.com/yulunzhang/RCAN.") + + +class ResidualGroup(nn.Module): + def __init__(self, n_feat, kernel_size, reduction, n_resblocks): + super(ResidualGroup, self).__init__() + modules_body = [Rcab(n_feat, reduction, kernel_size=kernel_size) for _ in + range(n_resblocks)] + modules_body.append(EasyConv2d(n_feat, n_feat, kernel_size)) + self.body = nn.Sequential(*modules_body) + + def forward(self, x): + res = self.body(x) + res += x + return res + + +class Rcan(nn.Module): + def __init__(self, channel, scale, n_resgroups, n_resblocks, n_feats, + reduction, rgb_range): + super(Rcan, self).__init__() + # RGB mean for DIV2K + rgb_mean = (0.4488, 0.4371, 0.4040) + self.sub_mean = MeanShift(rgb_mean, True, rgb_range) + # define head module + modules_head = [EasyConv2d(channel, n_feats, 3)] + # define body module + modules_body = [ + ResidualGroup(n_feats, 3, reduction, n_resblocks) for _ in + range(n_resgroups)] + modules_body.append(EasyConv2d(n_feats, n_feats, 3)) + # define tail module + modules_tail = [Upsample(n_feats, scale), + EasyConv2d(n_feats, channel, 3)] + self.add_mean = MeanShift(rgb_mean, False, rgb_range) + self.head = nn.Sequential(*modules_head) + self.body = nn.Sequential(*modules_body) + self.tail = nn.Sequential(*modules_tail) + + def forward(self, x): + x = self.sub_mean(x) + x = self.head(x) + res = self.body(x) + x + x = self.tail(res) + x = self.add_mean(x) + return x + + +class RCAN(L1Optimizer): + def __init__(self, channel, scale, n_resgroups, n_resblocks, n_feats, + reduction, rgb_range=255, **kwargs): + self.rgb_range = rgb_range + self.rcan = Rcan(channel, scale, n_resgroups, n_resblocks, n_feats, + reduction, rgb_range) + super(RCAN, self).__init__(scale, channel, **kwargs) + + def fn(self, x): + return self.rcan(x * self.rgb_range) / self.rgb_range diff --git a/VSR/Backend/Torch/Models/SRFeat.py b/VSR/Backend/Torch/Models/SRFeat.py index 76eee73..49e205a 100644 --- a/VSR/Backend/Torch/Models/SRFeat.py +++ b/VSR/Backend/Torch/Models/SRFeat.py @@ -8,17 +8,49 @@ # Email: wenyi.tang@intel.com # Update Date: 2019 - 3 - 15 +import logging + import numpy as np import torch import torch.nn.functional as F -from . import Discriminator as disc -from .Loss import VggFeatureLoss, gan_bce_loss from .Model import SuperResolution -from .srfeat import ops +from .Ops.Blocks import EasyConv2d, RB +from .Ops.Scale import Upsample +from .Ops.Discriminator import DCGAN +from .Ops.Loss import VggFeatureLoss, gan_bce_loss from ..Framework.Summary import get_writer from ..Util import Metrics +_logger = logging.getLogger("VSR.SRFEAT") +_logger.info("LICENSE: SRFeat is proposed by S. Park, et. al. " + "Implemented via PyTorch by @LoSealL.") + + +class Generator(torch.nn.Module): + """ Generator for SRFeat: + Single Image Super-Resolution with Feature Discrimination (ECCV 2018) + """ + + def __init__(self, channel, scale, filters, num_rb): + super(Generator, self).__init__() + self.head = EasyConv2d(channel, filters, 9) + for i in range(num_rb): + setattr(self, f'rb_{i:02d}', RB(filters, 3, 'lrelu', use_bn=True)) + setattr(self, f'merge_{i:02d}', EasyConv2d(filters, filters, 1)) + self.tail = torch.nn.Sequential( + Upsample(filters, scale), EasyConv2d(filters, channel, 3)) + self.num_rb = num_rb + + def forward(self, inputs): + x = self.head(inputs) + feat = [] + for i in range(self.num_rb): + x = getattr(self, f'rb_{i:02d}')(x) + feat.append(getattr(self, f'merge_{i:02d}')(x)) + x = self.tail(x + torch.stack(feat, dim=0).sum(0).squeeze(0)) + return x + class SRFEAT(SuperResolution): def __init__(self, channel, scale, patch_size=64, weights=(1, 0.01, 0.01), @@ -28,15 +60,15 @@ def __init__(self, channel, scale, patch_size=64, weights=(1, 0.01, 0.01), f = kwargs.get('filters', 64) self.use_gan = weights[1] > 0 self.use_feat_gan = weights[2] > 0 - self.srfeat = ops.Generator(channel, scale, f, n_rb) + self.srfeat = Generator(channel, scale, f, n_rb) self.gopt = torch.optim.Adam(self.trainable_variables('srfeat'), 1e-4) if self.use_gan: # vanilla image - self.dnet1 = disc.DCGAN(channel, np.log2(patch_size // 4) * 2, 'bn') + self.dnet1 = DCGAN(channel, np.log2(patch_size // 4) * 2, scale, 'bn') self.dopt1 = torch.optim.Adam(self.trainable_variables('dnet1'), 1e-4) if self.use_feat_gan: # vgg feature - self.dnet2 = disc.DCGAN(256, np.log2(patch_size // 16) * 2, 'bn') + self.dnet2 = DCGAN(256, np.log2(patch_size // 16) * 2, scale, 'bn') self.dopt2 = torch.optim.Adam(self.trainable_variables('dnet2'), 1e-4) self.vgg = [VggFeatureLoss(['block3_conv1'], True)] self.w = weights diff --git a/VSR/Backend/Torch/Models/Sofvsr.py b/VSR/Backend/Torch/Models/Sofvsr.py index 807aca0..4e18de5 100644 --- a/VSR/Backend/Torch/Models/Sofvsr.py +++ b/VSR/Backend/Torch/Models/Sofvsr.py @@ -3,23 +3,203 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/4/2 上午10:54 +import logging + import torch +import torch.nn as nn import torch.nn.functional as F from .Model import SuperResolution -from .sof.modules import SOFVSR as _SOFVSR -from .sof.modules import optical_flow_warp +from .Ops.Motion import STN +from .Ops.Blocks import EasyConv2d, Rdb from ..Util import Metrics from ..Util.Metrics import total_variance +_logger = logging.getLogger("VSR.SOF") +_logger.info("LICENSE: SOF-VSR is implemented by Longguan Wang. " + "@LongguanWang https://github.com/LongguangWang/SOF-VSR.") + + +class make_dense(nn.Module): + def __init__(self, channels_in, channels_out, kernel_size=3): + super(make_dense, self).__init__() + self.leaky_relu = nn.LeakyReLU(0.1, inplace=True) + self.conv = nn.Conv2d(channels_in, channels_out, kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + bias=False) + + def forward(self, x): + out = self.leaky_relu(self.conv(x)) + out = torch.cat((x, out), 1) + return out + + +class RDB(nn.Module): + def __init__(self, nDenselayer, channels, growth): + super(RDB, self).__init__() + modules = [] + channels_buffer = channels + for i in range(nDenselayer): + modules.append(make_dense(channels_buffer, growth)) + channels_buffer += growth + self.dense_layers = nn.Sequential(*modules) + self.conv_1x1 = nn.Conv2d(channels_buffer, channels, kernel_size=1, + padding=0, bias=False) + + def forward(self, x): + out = self.dense_layers(x) + out = self.conv_1x1(out) + out = out + x + return out + + +class OFRnet(nn.Module): + def __init__(self, upscale_factor): + super(OFRnet, self).__init__() + self.pool = nn.AvgPool2d(kernel_size=2) + self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', + align_corners=False) + self.final_upsample = nn.Upsample(scale_factor=upscale_factor, + mode='bilinear', align_corners=False) + self.shuffle = nn.PixelShuffle(upscale_factor) + self.upscale_factor = upscale_factor + # Level 1 + self.conv_L1_1 = nn.Conv2d(2, 32, 3, 1, 1, bias=False) + self.RDB1_1 = RDB(4, 32, 32) + self.RDB1_2 = RDB(4, 32, 32) + self.bottleneck_L1 = nn.Conv2d(64, 2, 3, 1, 1, bias=False) + self.conv_L1_2 = nn.Conv2d(2, 2, 3, 1, 1, bias=True) + # Level 2 + self.conv_L2_1 = nn.Conv2d(6, 32, 3, 1, 1, bias=False) + self.RDB2_1 = RDB(4, 32, 32) + self.RDB2_2 = RDB(4, 32, 32) + self.bottleneck_L2 = nn.Conv2d(64, 2, 3, 1, 1, bias=False) + self.conv_L2_2 = nn.Conv2d(2, 2, 3, 1, 1, bias=True) + # Level 3 + self.conv_L3_1 = nn.Conv2d(6, 32, 3, 1, 1, bias=False) + self.RDB3_1 = RDB(4, 32, 32) + self.RDB3_2 = RDB(4, 32, 32) + self.bottleneck_L3 = nn.Conv2d(64, 2 * upscale_factor ** 2, 3, 1, 1, + bias=False) + self.conv_L3_2 = nn.Conv2d(2 * upscale_factor ** 2, 2 * upscale_factor ** 2, + 3, 1, 1, bias=True) + self.warper = STN() + + def forward(self, x): + # Level 1 + x_L1 = self.pool(x) + _, _, h, w = x_L1.size() + input_L1 = self.conv_L1_1(x_L1) + buffer_1 = self.RDB1_1(input_L1) + buffer_2 = self.RDB1_2(buffer_1) + buffer = torch.cat((buffer_1, buffer_2), 1) + optical_flow_L1 = self.bottleneck_L1(buffer) + optical_flow_L1 = self.conv_L1_2(optical_flow_L1) + optical_flow_L1_upscaled = self.upsample(optical_flow_L1) # *2 + # Level 2 + x_L2 = self.warper(x[:, 0, :, :].unsqueeze(1), optical_flow_L1_upscaled, + gain=16) + x_L2_res = torch.unsqueeze(x[:, 1, :, :], dim=1) - x_L2 + x_L2 = torch.cat((x, x_L2, x_L2_res, optical_flow_L1_upscaled), 1) + input_L2 = self.conv_L2_1(x_L2) + buffer_1 = self.RDB2_1(input_L2) + buffer_2 = self.RDB2_2(buffer_1) + buffer = torch.cat((buffer_1, buffer_2), 1) + optical_flow_L2 = self.bottleneck_L2(buffer) + optical_flow_L2 = self.conv_L2_2(optical_flow_L2) + optical_flow_L2 = optical_flow_L2 + optical_flow_L1_upscaled + # Level 3 + x_L3 = self.warper(torch.unsqueeze(x[:, 0, :, :], dim=1), + optical_flow_L2, gain=16) + x_L3_res = torch.unsqueeze(x[:, 1, :, :], dim=1) - x_L3 + x_L3 = torch.cat((x, x_L3, x_L3_res, optical_flow_L2), 1) + input_L3 = self.conv_L3_1(x_L3) + buffer_1 = self.RDB3_1(input_L3) + buffer_2 = self.RDB3_2(buffer_1) + buffer = torch.cat((buffer_1, buffer_2), 1) + optical_flow_L3 = self.bottleneck_L3(buffer) + optical_flow_L3 = self.conv_L3_2(optical_flow_L3) + optical_flow_L3 = self.shuffle(optical_flow_L3) + self.final_upsample( + optical_flow_L2) # *4 + + return optical_flow_L3, optical_flow_L2, optical_flow_L1 + + +class SRnet(nn.Module): + def __init__(self, s, c, d): + """ + Args: + s: scale factor + c: channel numbers + d: video sequence number + """ + super(SRnet, self).__init__() + self.conv = nn.Conv2d(c * (2 * s ** 2 + d), 64, 3, 1, 1, bias=False) + self.RDB_1 = RDB(5, 64, 32) + self.RDB_2 = RDB(5, 64, 32) + self.RDB_3 = RDB(5, 64, 32) + self.RDB_4 = RDB(5, 64, 32) + self.RDB_5 = RDB(5, 64, 32) + self.bottleneck = nn.Conv2d(384, c * s ** 2, 1, 1, 0, bias=False) + self.conv_2 = nn.Conv2d(c * s ** 2, c * s ** 2, 3, 1, 1, bias=True) + self.shuffle = nn.PixelShuffle(upscale_factor=s) + + def forward(self, x): + input = self.conv(x) + buffer_1 = self.RDB_1(input) + buffer_2 = self.RDB_2(buffer_1) + buffer_3 = self.RDB_3(buffer_2) + buffer_4 = self.RDB_4(buffer_3) + buffer_5 = self.RDB_5(buffer_4) + output = torch.cat( + (buffer_1, buffer_2, buffer_3, buffer_4, buffer_5, input), 1) + output = self.bottleneck(output) + output = self.conv_2(output) + output = self.shuffle(output) + return output + + +class Sofvsr(nn.Module): + def __init__(self, scale, channel, depth): + super(Sofvsr, self).__init__() + self.upscale_factor = scale + self.c = channel + self.OFRnet = OFRnet(upscale_factor=scale) + self.SRnet = SRnet(scale, channel, depth) + self.warper = STN() + + def forward(self, x): + input_01 = torch.cat((torch.unsqueeze(x[:, 0, :, :], dim=1), + torch.unsqueeze(x[:, 1, :, :], dim=1)), 1) + input_21 = torch.cat((torch.unsqueeze(x[:, 2, :, :], dim=1), + torch.unsqueeze(x[:, 1, :, :], dim=1)), 1) + flow_01_L3, flow_01_L2, flow_01_L1 = self.OFRnet(input_01) + flow_21_L3, flow_21_L2, flow_21_L1 = self.OFRnet(input_21) + draft_cube = x + for i in range(self.upscale_factor): + for j in range(self.upscale_factor): + draft_01 = self.warper(x[:, :self.c, :, :], + flow_01_L3[:, :, i::self.upscale_factor, + j::self.upscale_factor] / self.upscale_factor, + gain=16) + draft_21 = self.warper(x[:, self.c * 2:, :, :], + flow_21_L3[:, :, i::self.upscale_factor, + j::self.upscale_factor] / self.upscale_factor, + gain=16) + draft_cube = torch.cat((draft_cube, draft_01, draft_21), 1) + output = self.SRnet(draft_cube) + return output, (flow_01_L3, flow_01_L2, flow_01_L1), ( + flow_21_L3, flow_21_L2, flow_21_L1) + class SOFVSR(SuperResolution): """Note: SOF is Y-channel SR with depth=3""" def __init__(self, scale, channel, depth=3, **kwargs): super(SOFVSR, self).__init__(scale, channel, **kwargs) - self.sof = _SOFVSR(scale, channel, depth) + self.sof = Sofvsr(scale, channel, depth) self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) + self.warper = STN() assert depth == 3 self.center = depth // 2 @@ -39,12 +219,12 @@ def train(self, inputs, labels, learning_rate=None): cur_d = F.avg_pool2d(cur, 2) nxt_d = F.avg_pool2d(nxt, 2) - pre_d_warp = optical_flow_warp(pre_d, flow01[2]) - pre_warp = optical_flow_warp(pre, flow01[1]) - hrp_warp = optical_flow_warp(hrp, flow01[0]) - nxt_d_warp = optical_flow_warp(nxt_d, flow21[2]) - nxt_warp = optical_flow_warp(nxt, flow21[1]) - hrn_warp = optical_flow_warp(hrn, flow21[0]) + pre_d_warp = self.warper(pre_d, flow01[2], gain=16) + pre_warp = self.warper(pre, flow01[1], gain=16) + hrp_warp = self.warper(hrp, flow01[0], gain=16) + nxt_d_warp = self.warper(nxt_d, flow21[2], gain=16) + nxt_warp = self.warper(nxt, flow21[1], gain=16) + hrn_warp = self.warper(hrn, flow21[0], gain=16) loss_lvl1 = F.mse_loss(pre_d_warp, cur_d) + F.mse_loss(nxt_d_warp, cur_d) + \ 0.01 * (total_variance(flow01[2]) + total_variance(flow21[2])) diff --git a/VSR/Backend/Torch/Models/Spmc.py b/VSR/Backend/Torch/Models/Spmc.py index dd7781f..38da03b 100644 --- a/VSR/Backend/Torch/Models/Spmc.py +++ b/VSR/Backend/Torch/Models/Spmc.py @@ -3,16 +3,130 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/5/26 下午12:49 +import logging + import torch +import torch.nn as nn from torch.nn import functional as F -from .Loss import total_variance from .Model import SuperResolution -from .spmc.ops import DetailRevealer +from .Ops.Blocks import Conv2dLSTMCell, EasyConv2d +from .Ops.Loss import total_variance +from .Ops.Motion import CoarseFineFlownet, STN from ..Framework.Summary import get_writer from ..Util.Metrics import psnr from ..Util.Utility import pad_if_divide, upsample +_logger = logging.getLogger("VSR.SPMC") +_logger.info("LICENSE: SPMC is proposed by X. Tao, et. al. " + "Implemented via PyTorch by @LoSealL.") +_logger.info("LICENSE: ConvLSTM is implemented by @Kaixhin.") + + +class ZeroUpsample(nn.Module): + def __init__(self, scale_factor): + super(ZeroUpsample, self).__init__() + self.ps = nn.PixelShuffle(scale_factor) + self.scale = scale_factor + + def forward(self, x): + z = torch.zeros_like(x).repeat_interleave(self.scale ** 2 - 1, dim=1) + x = torch.cat((x, z), dim=1) + return self.ps(x) + + +class SubPixelMotionCompensation(nn.Module): + def __init__(self, scale): + super(SubPixelMotionCompensation, self).__init__() + self.zero_up = ZeroUpsample(scale) + self.warper = STN() + self.scale = scale + + def forward(self, x, u=0, v=0, flow=None): + if flow is not None: + u = flow[:, 0] + v = flow[:, 1] + x2 = self.zero_up(x) + u2 = self.zero_up(u.unsqueeze(1)) * self.scale + v2 = self.zero_up(v.unsqueeze(1)) * self.scale + return self.warper(x2, u2.squeeze(1), v2.squeeze(1)) + + +class MotionEstimation(nn.Module): + def __init__(self, channel, gain=32): + super(MotionEstimation, self).__init__() + self.gain = gain + self.flownet = CoarseFineFlownet(channel) + + def forward(self, target, ref, to_tuple=None): + flow = self.flownet(target, ref, self.gain) + if to_tuple: + return flow[:, 0], flow[:, 1] + return flow + + +class DetailFusion(nn.Module): + def __init__(self, channel, base_filter): + super(DetailFusion, self).__init__() + f = base_filter + self.enc1 = EasyConv2d(channel, f, 5, activation='relu') + self.enc2 = nn.Sequential( + EasyConv2d(f, f * 2, 3, 2, activation='relu'), + EasyConv2d(f * 2, f * 2, 3, activation='relu')) + self.enc3 = EasyConv2d(f * 2, f * 4, 3, 2, activation='relu') + self.lstm = Conv2dLSTMCell(f * 4, f * 4, 3, 1, 1) + self.dec1 = nn.Sequential( + EasyConv2d(f * 4, f * 4, 3, activation='relu'), + nn.ConvTranspose2d(f * 4, f * 2, 4, 2, 1), + nn.ReLU(True)) + self.dec2 = nn.Sequential( + EasyConv2d(f * 2, f * 2, 3, activation='relu'), + nn.ConvTranspose2d(f * 2, f, 4, 2, 1), + nn.ReLU(True)) + self.dec3 = nn.Sequential( + EasyConv2d(f, f, 3, activation='relu'), + EasyConv2d(f, channel, 5)) + + def forward(self, x, hx): + add1 = self.enc1(x) + add2 = self.enc2(add1) + h0 = self.enc3(add2) + x, hx = self.lstm(h0, hx) + x = self.dec1(x) + x = self.dec2(x + add2) + x = self.dec3(x + add1) + return x, hx + + +class DetailRevealer(nn.Module): + def __init__(self, scale, channel, **kwargs): + super(DetailRevealer, self).__init__() + self.base_filter = kwargs.get('base_filter', 32) + self.me = MotionEstimation(channel, gain=kwargs.get('gain', 32)) + self.spmc = SubPixelMotionCompensation(scale) + self.vsr = DetailFusion(channel, self.base_filter) + self.scale = scale + self.hidden_state = None + + def reset(self): + self.hidden_state = None + + def forward(self, target, ref): + flow = self.me(target, ref) + hr_ref = self.spmc(ref, flow=flow) + hr_target = upsample(target, self.scale) + if self.hidden_state is None: + batch, _, height, width = hr_ref.shape + hidden_shape = (batch, self.base_filter * 4, height // 4, width // 4) + hx = (torch.zeros(hidden_shape, device=ref.device), + torch.zeros(hidden_shape, device=ref.device)) + else: + hx = self.hidden_state + res, hx = self.vsr(hr_ref, hx) + sr = hr_target + res + self.hidden_state = hx + return sr, flow + class SPMC(SuperResolution): def __init__(self, scale, channel, stage, lambda1, lambda2, residual, @@ -73,7 +187,7 @@ def eval(self, inputs, labels=None, **kwargs): self.spmc.reset() frames = [x.squeeze(1) for x in inputs[0].split(1, dim=1)] center = len(frames) // 2 - _frames = [pad_if_divide(x, 8, 'reflect') for x in frames] + _frames = [pad_if_divide(x, 12, 'reflect') for x in frames] target = _frames[center] a = (target.size(2) - frames[0].size(2)) * self.scale b = (target.size(3) - frames[0].size(3)) * self.scale diff --git a/VSR/Backend/Torch/Models/Srmd.py b/VSR/Backend/Torch/Models/Srmd.py index 011d29c..dccc88a 100644 --- a/VSR/Backend/Torch/Models/Srmd.py +++ b/VSR/Backend/Torch/Models/Srmd.py @@ -3,35 +3,74 @@ # Email: wenyitang@outlook.com # Update: 2020 - 2 - 11 +import logging + import numpy as np import torch -import torch.nn.functional as F +import torch.nn as nn -from VSR.Util.Math import gaussian_kernel, anisotropic_gaussian_kernel -from .Model import SuperResolution -from .srmd import ops, pca -from ..Framework.Summary import get_writer -from ..Util.Metrics import psnr +from VSR.Util.Math import anisotropic_gaussian_kernel, gaussian_kernel +from VSR.Util.PcaPrecompute import get_degradation +from .Ops.Blocks import EasyConv2d +from .Ops.Discriminator import DCGAN +from .Optim.SISR import PerceptualOptimizer from ..Util.Utility import imfilter +logging.getLogger("VSR.SRFEAT").info( + "LICENSE: SRMD is proposed by Kai Zhang, et. al. " + "Implemented via PyTorch by @LoSealL.") + + +class Net(nn.Module): + """ + SRMD CNN network. 12 conv layers + """ + + def __init__(self, scale=4, channels=3, layers=12, filters=128, + pca_length=15): + super(Net, self).__init__() + self.pca_length = pca_length + net = [EasyConv2d(channels + pca_length + 1, filters, 3, activation='relu')] + net += [EasyConv2d(filters, filters, 3, activation='relu') for _ in + range(layers - 2)] + net += [EasyConv2d(filters, channels * scale ** 2, 3), + nn.PixelShuffle(scale)] + self.body = nn.Sequential(*net) + + def forward(self, x, kernel=None, noise=None): + if kernel is None and noise is None: + kernel = torch.zeros(x.shape[0], 15, 1, device=x.device, dtype=x.dtype) + noise = torch.zeros(x.shape[0], 1, 1, device=x.device, dtype=x.dtype) + # degradation parameter + degpar = torch.cat([kernel, noise.reshape([-1, 1, 1])], dim=1) + degpar = degpar.reshape([-1, 1 + self.pca_length, 1, 1]) + degpar = torch.ones_like(x)[:, 0:1] * degpar + _x = torch.cat([x, degpar], dim=1) + return self.body(_x) + -class SRMD(SuperResolution): - def __init__(self, scale, channel, degradation=None, **kwargs): - super(SRMD, self).__init__(scale, channel) - self.srmd = ops.Net(scale=scale, channels=channel, **kwargs) - self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) +class SRMD(PerceptualOptimizer): + def __init__(self, scale, channel, degradation=None, layers=12, filters=128, + pca_length=15, **kwargs): degradation = degradation or {} noise = degradation.get('noise', 0) if noise > 1: noise /= 255 assert 0 <= noise <= 1 - self.pca_dim = kwargs.get('pca_dim', pca._PCA.shape[0]) - self.kernel_size = degradation.get('kernel_size', 15) + self.pca_dim = kwargs.get('pca_dim', 15) + self.kernel_size = degradation.get('kernel_size', pca_length) self.ktype = degradation.get('kernel_type', 'isotropic') self.l1 = degradation.get('l1', 0.1) self.l2 = degradation.get('l2', 0.1) self.theta = degradation.get('theta', 0.1) self.noise = noise + self.blur_padding = torch.nn.ReflectionPad2d(7) + self.srmd = Net(scale, channel, layers, filters, pca_length) + disc_opt = { + 'channel': channel, 'num_layers': 10, 'scale': scale, 'norm': 'BN' + } + super(SRMD, self).__init__(scale, channel, discriminator=DCGAN, + discriminator_kwargs=disc_opt, **kwargs) def gen_kernel(self, ktype, ksize, l1, l2=None, theta=0): if ktype == 'isotropic': @@ -45,66 +84,44 @@ def gen_kernel(self, ktype, ksize, l1, l2=None, theta=0): def gen_random_kernel(self): theta = np.random.uniform(0, np.pi) - l1 = np.random.uniform(0.1, 10) + l1 = np.random.uniform(0.1, self.l1) l2 = np.random.uniform(0.1, l1) return self.gen_kernel('anisotropic', self.kernel_size, l1, l2, theta) def gen_random_noise(self, shape): - stddev = np.random.uniform(0, 75 / 255, size=[shape[0]]) - noise = np.random.normal(size=shape) * stddev + stddev = np.random.uniform(0, self.noise, size=[shape[0]]) + noise = np.random.normal(size=shape) * stddev.reshape([-1, 1, 1, 1]) return noise, stddev - def train(self, inputs, labels, learning_rate=None): - for opt in self.opts.values(): - if learning_rate: - for param_group in opt.param_groups: - param_group["lr"] = learning_rate - lr = inputs[0] + def fn(self, lr): batch = lr.shape[0] - noise, stddev = self.gen_random_noise(lr.shape) - kernel = [self.gen_random_kernel() for _ in range(batch)] - degpar = torch.tensor([pca.get_degradation(k) for k in kernel], - dtype=lr.dtype, device=lr.device) - kernel = torch.tensor(kernel, dtype=lr.dtype, device=lr.device) - noise = torch.tensor(noise, dtype=lr.dtype, device=lr.device) - stddev = torch.tensor(stddev, dtype=lr.dtype, device=lr.device) - lr = imfilter(lr, kernel) + noise - sr = self.srmd(lr, degpar, stddev) - loss = F.l1_loss(sr, labels[0]) - self.opt.zero_grad() - loss.backward() - self.opt.step() - return { - 'loss': loss.detach().cpu().numpy() - } - - def eval(self, inputs, labels=None, **kwargs): - metrics = {} - lr = inputs[0] - batch = lr.shape[0] - degpar = torch.tensor( - [ - pca.get_degradation(self.gen_kernel(self.ktype, - self.kernel_size, - self.l1, - self.l2, - self.theta)) - ] * batch, - dtype=lr.dtype, - device=lr.device) - stddev = torch.tensor( - [self.noise] * batch, - dtype=lr.dtype, - device=lr.device) - sr = self.srmd(lr, degpar, stddev).detach().cpu() - if labels is not None: - metrics['psnr'] = psnr(sr, labels[0]) - writer = get_writer(self.name) - if writer is not None: - step = kwargs.get('epoch', 0) - writer.image('gt', labels[0], step=step) - writer.image('clean', sr.clamp(0, 1), step=step) - return [sr.numpy()], metrics + if self.srmd.training: + noise, stddev = self.gen_random_noise(lr.shape) + kernel = [self.gen_random_kernel() for _ in range(batch)] + degpar = torch.tensor([get_degradation(k) for k in kernel], + dtype=lr.dtype, device=lr.device) + kernel = torch.tensor(kernel, dtype=lr.dtype, device=lr.device) + noise = torch.tensor(noise, dtype=lr.dtype, device=lr.device) + stddev = torch.tensor(stddev, dtype=lr.dtype, device=lr.device) + lr = imfilter(lr, kernel, self.blur_padding) + noise + sr = self.srmd(lr, degpar, stddev) + else: + degpar = torch.tensor( + [ + get_degradation(self.gen_kernel(self.ktype, + self.kernel_size, + self.l1, + self.l2, + self.theta)) + ] * batch, + dtype=lr.dtype, + device=lr.device) + stddev = torch.tensor( + [self.noise] * batch, + dtype=lr.dtype, + device=lr.device) + sr = self.srmd(lr, degpar, stddev) + return sr def export(self, export_dir): """An example of how to export ONNX format""" diff --git a/VSR/Backend/Torch/Models/TecoGAN.py b/VSR/Backend/Torch/Models/TecoGAN.py index 88762f7..bb0603e 100644 --- a/VSR/Backend/Torch/Models/TecoGAN.py +++ b/VSR/Backend/Torch/Models/TecoGAN.py @@ -3,30 +3,92 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/5/7 下午5:21 +import logging + import numpy as np import torch import torch.nn.functional as F from torch import nn -from .Arch import SpaceToDepth -from .Loss import VggFeatureLoss, gan_bce_loss, ragan_bce_loss from .Model import SuperResolution -from .frvsr.ops import FNet -from .teco.ops import TecoDiscriminator, TecoGenerator -from .video.motion import STN +from .Ops.Blocks import EasyConv2d, RB +from .Ops.Loss import VggFeatureLoss, ragan_bce_loss +from .Ops.Motion import Flownet, STN +from .Ops.Scale import SpaceToDepth, Upsample from ..Framework.Summary import get_writer from ..Util import Metrics from ..Util.Utility import pad_if_divide, upsample +_logger = logging.getLogger("VSR.TecoGAN") +_logger.info("LICENSE: TecoGAN is implemented by Mengyu Chu, et. al. " + "@rachelchu https://github.com/rachelchu/TecoGAN") +_logger.warning("Training of TecoGAN hasn't been verified!!") + + +class TecoGenerator(nn.Module): + """Generator in TecoGAN. + + Note: the flow estimation net `Fnet` shares with FRVSR. + + Args: + filters: basic filter numbers [default: 64] + num_rb: number of residual blocks [default: 16] + """ + + def __init__(self, channel, scale, filters, num_rb): + super(TecoGenerator, self).__init__() + rbs = [] + for i in range(num_rb): + rbs.append(RB(filters, filters, 3, 'relu')) + self.body = nn.Sequential( + EasyConv2d(channel * (1 + scale ** 2), filters, 3, activation='relu'), + *rbs, + Upsample(filters, scale, 'nearest', activation='relu'), + EasyConv2d(filters, channel, 3)) + + def forward(self, x, prev, residual=None): + """`residual` is the bicubically upsampled HR images""" + sr = self.body(torch.cat((x, prev), dim=1)) + if residual is not None: + sr += residual + return sr + + +class TecoDiscriminator(nn.Module): + def __init__(self, channel, filters, patch_size): + super(TecoDiscriminator, self).__init__() + f = filters + self.conv0 = EasyConv2d(channel * 6, f, 3, activation='leaky') + self.conv1 = EasyConv2d(f, f, 4, 2, activation='leaky', use_bn=True) + self.conv2 = EasyConv2d(f, f, 4, 2, activation='leaky', use_bn=True) + self.conv3 = EasyConv2d(f, f * 2, 4, 2, activation='leaky', use_bn=True) + self.conv4 = EasyConv2d(f * 2, f * 4, 4, 2, activation='leaky', use_bn=True) + # self.pool = nn.AdaptiveAvgPool2d(1) + self.linear = nn.Linear(f * 4 * (patch_size // 16) ** 2, 1) + + def forward(self, x): + """The inputs `x` is the concat of 8 tensors. + Note that we remove the duplicated gt/yt in paper (9 - 1 = 8). + """ + l0 = self.conv0(x) + l1 = self.conv1(l0) + l2 = self.conv2(l1) + l3 = self.conv3(l2) + l4 = self.conv4(l3) + # y = self.pool(l4) + y = self.linear(l4.flatten(1)) + return y, (l1, l2, l3, l4) + class Composer(nn.Module): def __init__(self, scale, channel, gain=24, filters=64, n_rb=16): super(Composer, self).__init__() - self.fnet = FNet(channel, gain=gain) + self.fnet = Flownet(channel) self.gnet = TecoGenerator(channel, scale, filters, n_rb) self.warpper = STN(padding_mode='border') self.spd = SpaceToDepth(scale) self.scale = scale + self.gain = gain def forward(self, lr, lr_pre, sr_pre, detach_fnet=None): """ @@ -36,7 +98,7 @@ def forward(self, lr, lr_pre, sr_pre, detach_fnet=None): sr_pre: t_0 sr frame detach_fnet: detach BP to fnet """ - flow = self.fnet(lr, lr_pre) + flow = self.fnet(lr, lr_pre, gain=self.gain) flow_up = self.scale * upsample(flow, self.scale) u, v = [x.squeeze(1) for x in flow_up.split(1, dim=1)] sr_warp = self.warpper(sr_pre, u, v) diff --git a/VSR/Backend/Torch/Models/Vespcn.py b/VSR/Backend/Torch/Models/Vespcn.py index 83d3af2..2473962 100644 --- a/VSR/Backend/Torch/Models/Vespcn.py +++ b/VSR/Backend/Torch/Models/Vespcn.py @@ -3,20 +3,100 @@ # Email: wenyi.tang@intel.com # Update Date: 2019/4/3 下午5:10 +import logging + import torch +import torch.nn as nn import torch.nn.functional as F from .Model import SuperResolution -from .vespcn import ops +from .Ops.Blocks import EasyConv2d +from .Ops.Motion import CoarseFineFlownet, STN from ..Framework.Summary import get_writer from ..Util import Metrics from ..Util.Utility import pad_if_divide +_logger = logging.getLogger("VSR.VESPCN") +_logger.info("LICENSE: VESPCN is proposed at CVPR2017 by Twitter. " + "Implemented by myself @LoSealL.") + + +class ReluRB(nn.Module): + def __init__(self, inchannels, outchannels): + super(ReluRB, self).__init__() + self.conv1 = nn.Conv2d(inchannels, 64, 3, 1, 1) + self.conv2 = nn.Conv2d(64, outchannels, 3, 1, 1) + + def forward(self, inputs): + x = F.relu(inputs) + x = self.conv1(x) + x = F.relu(x) + x = self.conv2(x) + return x + inputs + + +class MotionCompensation(nn.Module): + def __init__(self, channel, gain=32): + super(MotionCompensation, self).__init__() + self.gain = gain + self.flownet = CoarseFineFlownet(channel) + self.warp_f = STN(padding_mode='border') + + def forward(self, target, ref): + flow = self.flownet(target, ref, self.gain) + warping = self.warp_f(ref, flow[:, 0], flow[:, 1]) + return warping, flow + + +class SRNet(nn.Module): + def __init__(self, scale, channel, depth): + super(SRNet, self).__init__() + self.entry = EasyConv2d(channel * depth, 64, 3) + self.exit = EasyConv2d(64, channel, 3) + self.body = nn.Sequential( + ReluRB(64, 64), + ReluRB(64, 64), + ReluRB(64, 64), + nn.ReLU(True)) + self.conv = EasyConv2d(64, 64 * scale ** 2, 3) + self.up = nn.PixelShuffle(scale) + + def forward(self, inputs): + x = self.entry(inputs) + y = self.body(x) + x + y = self.conv(y) + y = self.up(y) + y = self.exit(y) + return y + + +class Vespcn(nn.Module): + def __init__(self, scale, channel, depth): + super(Vespcn, self).__init__() + self.sr = SRNet(scale, channel, depth) + self.mc = MotionCompensation(channel) + self.depth = depth + + def forward(self, *inputs): + center = self.depth // 2 + target = inputs[center] + refs = inputs[:center] + inputs[center + 1:] + warps = [] + flows = [] + for r in refs: + warp, flow = self.mc(target, r) + warps.append(warp) + flows.append(flow) + warps.append(target) + x = torch.cat(warps, 1) + sr = self.sr(x) + return sr, warps[:-1], flows + class VESPCN(SuperResolution): def __init__(self, scale, channel, depth=3, **kwargs): super(VESPCN, self).__init__(scale, channel, **kwargs) - self.vespcn = ops.VESPCN(scale, channel, depth) + self.vespcn = Vespcn(scale, channel, depth) self.opt = torch.optim.Adam(self.trainable_variables(), 1e-4) self.depth = depth diff --git a/VSR/Backend/Torch/Models/__init__.py b/VSR/Backend/Torch/Models/__init__.py index fe23104..e11379e 100644 --- a/VSR/Backend/Torch/Models/__init__.py +++ b/VSR/Backend/Torch/Models/__init__.py @@ -8,6 +8,7 @@ __all__ = ['get_model', 'list_supported_models'] models = { + 'cubic': ('Bicubic', 'BICUBIC'), # alias: (file, class) 'espcn': ('Classic', 'ESPCN'), 'srcnn': ('Classic', 'SRCNN'), @@ -44,6 +45,9 @@ 'edrn': ('NTIRE19', 'EDRN'), 'frn': ('NTIRE19', 'FRN'), 'ran': ('NTIRE19', 'RAN'), + # NTIRE 2020 + 'realsr': ('NTIRE20', 'RealSR'), + 'esr': ('EfficientSR', 'ESR') } diff --git a/VSR/Backend/Torch/Models/carn/__init__.py b/VSR/Backend/Torch/Models/carn/__init__.py deleted file mode 100644 index 9311587..0000000 --- a/VSR/Backend/Torch/Models/carn/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 14 - -import logging -_logger = logging.getLogger("VSR.CARN") -_logger.info("LICENSE: CARN is implemented by Namhyuk Ahn. " - "@nmhkahn https://github.com/nmhkahn/CARN-pytorch") diff --git a/VSR/Backend/Torch/Models/carn/carn.py b/VSR/Backend/Torch/Models/carn/carn.py deleted file mode 100644 index 11cd8ec..0000000 --- a/VSR/Backend/Torch/Models/carn/carn.py +++ /dev/null @@ -1,85 +0,0 @@ -import torch -import torch.nn as nn - -from . import ops - - -class Block(nn.Module): - def __init__(self, - in_channels, out_channels, - group=1): - super(Block, self).__init__() - - self.b1 = ops.ResidualBlock(64, 64) - self.b2 = ops.ResidualBlock(64, 64) - self.b3 = ops.ResidualBlock(64, 64) - self.c1 = ops.BasicBlock(64 * 2, 64, 1, 1, 0) - self.c2 = ops.BasicBlock(64 * 3, 64, 1, 1, 0) - self.c3 = ops.BasicBlock(64 * 4, 64, 1, 1, 0) - - def forward(self, x): - c0 = o0 = x - - b1 = self.b1(o0) - c1 = torch.cat([c0, b1], dim=1) - o1 = self.c1(c1) - - b2 = self.b2(o1) - c2 = torch.cat([c1, b2], dim=1) - o2 = self.c2(c2) - - b3 = self.b3(o2) - c3 = torch.cat([c2, b3], dim=1) - o3 = self.c3(c3) - - return o3 - - -class Net(nn.Module): - def __init__(self, **kwargs): - super(Net, self).__init__() - - scale = kwargs.get("scale") - multi_scale = kwargs.get("multi_scale") - group = kwargs.get("group", 1) - - self.sub_mean = ops.MeanShift((0.4488, 0.4371, 0.4040), sub=True) - self.add_mean = ops.MeanShift((0.4488, 0.4371, 0.4040), sub=False) - - self.entry = nn.Conv2d(3, 64, 3, 1, 1) - - self.b1 = Block(64, 64) - self.b2 = Block(64, 64) - self.b3 = Block(64, 64) - self.c1 = ops.BasicBlock(64 * 2, 64, 1, 1, 0) - self.c2 = ops.BasicBlock(64 * 3, 64, 1, 1, 0) - self.c3 = ops.BasicBlock(64 * 4, 64, 1, 1, 0) - - self.upsample = ops.UpsampleBlock(64, scale=scale, - multi_scale=multi_scale, - group=group) - self.exit = nn.Conv2d(64, 3, 3, 1, 1) - - def forward(self, x, scale=None): - x = self.sub_mean(x) - x = self.entry(x) - c0 = o0 = x - - b1 = self.b1(o0) - c1 = torch.cat([c0, b1], dim=1) - o1 = self.c1(c1) - - b2 = self.b2(o1) - c2 = torch.cat([c1, b2], dim=1) - o2 = self.c2(c2) - - b3 = self.b3(o2) - c3 = torch.cat([c2, b3], dim=1) - o3 = self.c3(c3) - - out = self.upsample(o3, scale=scale) - - out = self.exit(out) - out = self.add_mean(out) - - return out diff --git a/VSR/Backend/Torch/Models/carn/carn_m.py b/VSR/Backend/Torch/Models/carn/carn_m.py deleted file mode 100644 index 646ee7c..0000000 --- a/VSR/Backend/Torch/Models/carn/carn_m.py +++ /dev/null @@ -1,83 +0,0 @@ -import torch -import torch.nn as nn - -from . import ops - - -class Block(nn.Module): - def __init__(self, - in_channels, out_channels, - group=1): - super(Block, self).__init__() - - self.b1 = ops.EResidualBlock(64, 64, group=group) - self.c1 = ops.BasicBlock(64 * 2, 64, 1, 1, 0) - self.c2 = ops.BasicBlock(64 * 3, 64, 1, 1, 0) - self.c3 = ops.BasicBlock(64 * 4, 64, 1, 1, 0) - - def forward(self, x): - c0 = o0 = x - - b1 = self.b1(o0) - c1 = torch.cat([c0, b1], dim=1) - o1 = self.c1(c1) - - b2 = self.b1(o1) - c2 = torch.cat([c1, b2], dim=1) - o2 = self.c2(c2) - - b3 = self.b1(o2) - c3 = torch.cat([c2, b3], dim=1) - o3 = self.c3(c3) - - return o3 - - -class Net(nn.Module): - def __init__(self, **kwargs): - super(Net, self).__init__() - - scale = kwargs.get("scale") - multi_scale = kwargs.get("multi_scale") - group = kwargs.get("group", 1) - - self.sub_mean = ops.MeanShift((0.4488, 0.4371, 0.4040), sub=True) - self.add_mean = ops.MeanShift((0.4488, 0.4371, 0.4040), sub=False) - - self.entry = nn.Conv2d(3, 64, 3, 1, 1) - - self.b1 = Block(64, 64, group=group) - self.b2 = Block(64, 64, group=group) - self.b3 = Block(64, 64, group=group) - self.c1 = ops.BasicBlock(64 * 2, 64, 1, 1, 0) - self.c2 = ops.BasicBlock(64 * 3, 64, 1, 1, 0) - self.c3 = ops.BasicBlock(64 * 4, 64, 1, 1, 0) - - self.upsample = ops.UpsampleBlock(64, scale=scale, - multi_scale=multi_scale, - group=group) - self.exit = nn.Conv2d(64, 3, 3, 1, 1) - - def forward(self, x, scale): - x = self.sub_mean(x) - x = self.entry(x) - c0 = o0 = x - - b1 = self.b1(o0) - c1 = torch.cat([c0, b1], dim=1) - o1 = self.c1(c1) - - b2 = self.b2(o1) - c2 = torch.cat([c1, b2], dim=1) - o2 = self.c2(c2) - - b3 = self.b3(o2) - c3 = torch.cat([c2, b3], dim=1) - o3 = self.c3(c3) - - out = self.upsample(o3, scale=scale) - - out = self.exit(out) - out = self.add_mean(out) - - return out diff --git a/VSR/Backend/Torch/Models/carn/ops.py b/VSR/Backend/Torch/Models/carn/ops.py deleted file mode 100644 index 70e817f..0000000 --- a/VSR/Backend/Torch/Models/carn/ops.py +++ /dev/null @@ -1,143 +0,0 @@ -import math - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def init_weights(modules): - pass - - -class MeanShift(nn.Module): - def __init__(self, mean_rgb, sub): - super(MeanShift, self).__init__() - - sign = -1 if sub else 1 - r = mean_rgb[0] * sign - g = mean_rgb[1] * sign - b = mean_rgb[2] * sign - - self.shifter = nn.Conv2d(3, 3, 1, 1, 0) - self.shifter.weight.data = torch.eye(3).view(3, 3, 1, 1) - self.shifter.bias.data = torch.Tensor([r, g, b]) - - # Freeze the mean shift layer - for params in self.shifter.parameters(): - params.requires_grad = False - - def forward(self, x): - x = self.shifter(x) - return x - - -class BasicBlock(nn.Module): - def __init__(self, - in_channels, out_channels, - ksize=3, stride=1, pad=1): - super(BasicBlock, self).__init__() - - self.body = nn.Sequential( - nn.Conv2d(in_channels, out_channels, ksize, stride, pad), - nn.ReLU(inplace=True) - ) - - init_weights(self.modules) - - def forward(self, x): - out = self.body(x) - return out - - -class ResidualBlock(nn.Module): - def __init__(self, - in_channels, out_channels): - super(ResidualBlock, self).__init__() - - self.body = nn.Sequential( - nn.Conv2d(in_channels, out_channels, 3, 1, 1), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels, 3, 1, 1), - ) - - init_weights(self.modules) - - def forward(self, x): - out = self.body(x) - out = F.relu(out + x) - return out - - -class EResidualBlock(nn.Module): - def __init__(self, - in_channels, out_channels, - group=1): - super(EResidualBlock, self).__init__() - - self.body = nn.Sequential( - nn.Conv2d(in_channels, out_channels, 3, 1, 1, groups=group), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels, 3, 1, 1, groups=group), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels, 1, 1, 0), - ) - - init_weights(self.modules) - - def forward(self, x): - out = self.body(x) - out = F.relu(out + x) - return out - - -class UpsampleBlock(nn.Module): - def __init__(self, - n_channels, scale, multi_scale, - group=1): - super(UpsampleBlock, self).__init__() - - if multi_scale: - self.up2 = _UpsampleBlock(n_channels, scale=2, group=group) - self.up3 = _UpsampleBlock(n_channels, scale=3, group=group) - self.up4 = _UpsampleBlock(n_channels, scale=4, group=group) - else: - self.up = _UpsampleBlock(n_channels, scale=scale, group=group) - - self.multi_scale = multi_scale - - def forward(self, x, scale=None): - if self.multi_scale: - if scale == 2: - return self.up2(x) - elif scale == 3: - return self.up3(x) - elif scale == 4: - return self.up4(x) - else: - return self.up(x) - - -class _UpsampleBlock(nn.Module): - def __init__(self, - n_channels, scale, - group=1): - super(_UpsampleBlock, self).__init__() - - modules = [] - if scale == 2 or scale == 4 or scale == 8: - for _ in range(int(math.log(scale, 2))): - modules += [ - nn.Conv2d(n_channels, 4 * n_channels, 3, 1, 1, groups=group), - nn.ReLU(inplace=True)] - modules += [nn.PixelShuffle(2)] - elif scale == 3: - modules += [nn.Conv2d(n_channels, 9 * n_channels, 3, 1, 1, groups=group), - nn.ReLU(inplace=True)] - modules += [nn.PixelShuffle(3)] - - self.body = nn.Sequential(*modules) - init_weights(self.modules) - - def forward(self, x): - out = self.body(x) - return out diff --git a/VSR/Backend/Torch/Models/dbpn/__init__.py b/VSR/Backend/Torch/Models/dbpn/__init__.py deleted file mode 100644 index 18aa8e9..0000000 --- a/VSR/Backend/Torch/Models/dbpn/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 15 - -import logging -_logger = logging.getLogger("VSR.DBPN") -_logger.info("LICENSE: DBPN is implemented by Haris. " - "@alterzero https://github.com/alterzero/DBPN-Pytorch") diff --git a/VSR/Backend/Torch/Models/dbpn/base_networks.py b/VSR/Backend/Torch/Models/dbpn/base_networks.py deleted file mode 100644 index 9524b1b..0000000 --- a/VSR/Backend/Torch/Models/dbpn/base_networks.py +++ /dev/null @@ -1,438 +0,0 @@ -import torch -import math - - -class DenseBlock(torch.nn.Module): - def __init__(self, input_size, output_size, bias=True, activation='relu', - norm='batch'): - super(DenseBlock, self).__init__() - self.fc = torch.nn.Linear(input_size, output_size, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm1d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm1d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.fc(x)) - else: - out = self.fc(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class ConvBlock(torch.nn.Module): - def __init__(self, input_size, output_size, kernel_size=3, stride=1, - padding=1, bias=True, activation='prelu', norm=None): - super(ConvBlock, self).__init__() - self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, - padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.conv(x)) - else: - out = self.conv(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class DeconvBlock(torch.nn.Module): - def __init__(self, input_size, output_size, kernel_size=4, stride=2, - padding=1, bias=True, activation='prelu', norm=None): - super(DeconvBlock, self).__init__() - self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, - stride, padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.deconv(x)) - else: - out = self.deconv(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class ResnetBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=3, stride=1, padding=1, bias=True, - activation='prelu', norm='batch'): - super(ResnetBlock, self).__init__() - self.conv1 = torch.nn.Conv2d(num_filter, num_filter, kernel_size, stride, - padding, bias=bias) - self.conv2 = torch.nn.Conv2d(num_filter, num_filter, kernel_size, stride, - padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(num_filter) - elif norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(num_filter) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - residual = x - if self.norm is not None: - out = self.bn(self.conv1(x)) - else: - out = self.conv1(x) - - if self.activation is not None: - out = self.act(out) - - if self.norm is not None: - out = self.bn(self.conv2(out)) - else: - out = self.conv2(out) - - out = torch.add(out, residual) - return out - - -class UpBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias=True, - activation='prelu', norm=None): - super(UpBlock, self).__init__() - self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class UpBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, scale=4, - bias=True, activation='prelu', norm=None): - super(UpBlockPix, self).__init__() - self.up_conv1 = Upsampler(scale, num_filter) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = Upsampler(scale, num_filter) - - def forward(self, x): - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class D_UpBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, bias=True, activation='prelu', norm=None): - super(D_UpBlock, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class D_UpBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, scale=4, bias=True, activation='prelu', norm=None): - super(D_UpBlockPix, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.up_conv1 = Upsampler(scale, num_filter) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = Upsampler(scale, num_filter) - - def forward(self, x): - x = self.conv(x) - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class DownBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias=True, - activation='prelu', norm=None): - super(DownBlock, self).__init__() - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class DownBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, scale=4, - bias=True, activation='prelu', norm=None): - super(DownBlockPix, self).__init__() - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = Upsampler(scale, num_filter) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class D_DownBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, bias=True, activation='prelu', norm=None): - super(D_DownBlock, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class D_DownBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, scale=4, bias=True, activation='prelu', norm=None): - super(D_DownBlockPix, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = Upsampler(scale, num_filter) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class PSBlock(torch.nn.Module): - def __init__(self, input_size, output_size, scale_factor, kernel_size=3, - stride=1, padding=1, bias=True, activation='prelu', - norm='batch'): - super(PSBlock, self).__init__() - self.conv = torch.nn.Conv2d(input_size, output_size * scale_factor ** 2, - kernel_size, stride, padding, bias=bias) - self.ps = torch.nn.PixelShuffle(scale_factor) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.ps(self.conv(x))) - else: - out = self.ps(self.conv(x)) - - if self.activation is not None: - out = self.act(out) - return out - - -class Upsampler(torch.nn.Module): - def __init__(self, scale, n_feat, bn=False, act='prelu', bias=True): - super(Upsampler, self).__init__() - modules = [] - for _ in range(int(math.log(scale, 2))): - modules.append( - ConvBlock(n_feat, 4 * n_feat, 3, 1, 1, bias, activation=None, - norm=None)) - modules.append(torch.nn.PixelShuffle(2)) - if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) - # modules.append(torch.nn.PReLU()) - self.up = torch.nn.Sequential(*modules) - - self.activation = act - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - out = self.up(x) - if self.activation is not None: - out = self.act(out) - return out - - -class Upsample2xBlock(torch.nn.Module): - def __init__(self, input_size, output_size, bias=True, upsample='deconv', - activation='relu', norm='batch'): - super(Upsample2xBlock, self).__init__() - scale_factor = 2 - # 1. Deconvolution (Transposed convolution) - if upsample == 'deconv': - self.upsample = DeconvBlock(input_size, output_size, - kernel_size=4, stride=2, padding=1, - bias=bias, activation=activation, norm=norm) - - # 2. Sub-pixel convolution (Pixel shuffler) - elif upsample == 'ps': - self.upsample = PSBlock(input_size, output_size, - scale_factor=scale_factor, - bias=bias, activation=activation, norm=norm) - - # 3. Resize and Convolution - elif upsample == 'rnc': - self.upsample = torch.nn.Sequential( - torch.nn.Upsample(scale_factor=scale_factor, mode='nearest'), - ConvBlock(input_size, output_size, - kernel_size=3, stride=1, padding=1, - bias=bias, activation=activation, norm=norm) - ) - - def forward(self, x): - out = self.upsample(x) - return out - - -class CascadedBlock(torch.nn.Module): - def __init__(self, padding=1, **kwargs): - super(CascadedBlock, self).__init__() - self.rb1 = ResnetBlock(64, padding=padding) - self.rb2 = ResnetBlock(64, padding=padding) - self.rb3 = ResnetBlock(64, padding=padding) - self.rb4 = ResnetBlock(64, padding=padding) - - self.cb1 = torch.nn.Conv2d(64 * 2, 64, 1, padding=0) - self.cb2 = torch.nn.Conv2d(64 * 3, 64, 1, padding=0) - self.cb3 = torch.nn.Conv2d(64 * 4, 64, 1, padding=0) - self.cb4 = torch.nn.Conv2d(64 * 5, 64, 1, padding=0) - - def forward(self, x): - x1 = self.rb1(x) - x1_c = torch.cat([x, x1], 1) - x1_s = self.cb1(x1_c) - x2 = self.rb2(x1_s) - x2_c = torch.cat([x, x1, x2], 1) - x2_s = self.cb2(x2_c) - x3 = self.rb3(x2_s) - x3_c = torch.cat([x, x1, x2, x3], 1) - x3_s = self.cb3(x3_c) - x4 = self.rb4(x3_s) - x4_c = torch.cat([x, x1, x2, x3, x4], 1) - x4_s = self.cb4(x4_c) - return x4_s diff --git a/VSR/Backend/Torch/Models/dbpn/dbpn.py b/VSR/Backend/Torch/Models/dbpn/dbpn.py deleted file mode 100644 index 81106b1..0000000 --- a/VSR/Backend/Torch/Models/dbpn/dbpn.py +++ /dev/null @@ -1,98 +0,0 @@ -import torch.nn as nn - -from .base_networks import * - - -class Net(nn.Module): - def __init__(self, num_channels, base_filter, feat, num_stages, scale_factor): - super(Net, self).__init__() - - if scale_factor == 2: - kernel = 6 - stride = 2 - padding = 2 - elif scale_factor == 4: - kernel = 8 - stride = 4 - padding = 2 - elif scale_factor == 8: - kernel = 12 - stride = 8 - padding = 2 - - # Initial Feature Extraction - self.feat0 = ConvBlock(num_channels, feat, 3, 1, 1, activation='prelu', - norm=None) - self.feat1 = ConvBlock(feat, base_filter, 1, 1, 0, activation='prelu', - norm=None) - # Back-projection stages - self.up1 = UpBlock(base_filter, kernel, stride, padding) - self.down1 = DownBlock(base_filter, kernel, stride, padding) - self.up2 = UpBlock(base_filter, kernel, stride, padding) - self.down2 = D_DownBlock(base_filter, kernel, stride, padding, 2) - self.up3 = D_UpBlock(base_filter, kernel, stride, padding, 2) - self.down3 = D_DownBlock(base_filter, kernel, stride, padding, 3) - self.up4 = D_UpBlock(base_filter, kernel, stride, padding, 3) - self.down4 = D_DownBlock(base_filter, kernel, stride, padding, 4) - self.up5 = D_UpBlock(base_filter, kernel, stride, padding, 4) - self.down5 = D_DownBlock(base_filter, kernel, stride, padding, 5) - self.up6 = D_UpBlock(base_filter, kernel, stride, padding, 5) - self.down6 = D_DownBlock(base_filter, kernel, stride, padding, 6) - self.up7 = D_UpBlock(base_filter, kernel, stride, padding, 6) - # Reconstruction - self.output_conv = ConvBlock(num_stages * base_filter, num_channels, 3, 1, - 1, activation=None, norm=None) - - for m in self.modules(): - classname = m.__class__.__name__ - if classname.find('Conv2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - elif classname.find('ConvTranspose2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x): - x = self.feat0(x) - x = self.feat1(x) - - h1 = self.up1(x) - l1 = self.down1(h1) - h2 = self.up2(l1) - - concat_h = torch.cat((h2, h1), 1) - l = self.down2(concat_h) - - concat_l = torch.cat((l, l1), 1) - h = self.up3(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down3(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up4(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down4(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up5(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down5(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up6(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down6(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up7(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - x = self.output_conv(concat_h) - - return x diff --git a/VSR/Backend/Torch/Models/dbpn/dbpn_v1.py b/VSR/Backend/Torch/Models/dbpn/dbpn_v1.py deleted file mode 100644 index 6d07cbe..0000000 --- a/VSR/Backend/Torch/Models/dbpn/dbpn_v1.py +++ /dev/null @@ -1,122 +0,0 @@ -import torch.nn as nn - -from .base_networks import * - - -class Net(nn.Module): - def __init__(self, num_channels, base_filter, feat, num_stages, scale_factor): - super(Net, self).__init__() - - if scale_factor == 2: - kernel = 6 - stride = 2 - padding = 2 - elif scale_factor == 4: - kernel = 8 - stride = 4 - padding = 2 - elif scale_factor == 8: - kernel = 12 - stride = 8 - padding = 2 - - # Initial Feature Extraction - self.feat0 = ConvBlock(num_channels, feat, 3, 1, 1, activation='prelu', - norm=None) - self.feat1 = ConvBlock(feat, base_filter, 1, 1, 0, activation='prelu', - norm=None) - # Back-projection stages - self.up1 = UpBlock(base_filter, kernel, stride, padding) - self.down1 = DownBlock(base_filter, kernel, stride, padding) - self.up2 = UpBlock(base_filter, kernel, stride, padding) - self.down2 = D_DownBlock(base_filter, kernel, stride, padding, 2) - self.up3 = D_UpBlock(base_filter, kernel, stride, padding, 2) - self.down3 = D_DownBlock(base_filter, kernel, stride, padding, 3) - self.up4 = D_UpBlock(base_filter, kernel, stride, padding, 3) - self.down4 = D_DownBlock(base_filter, kernel, stride, padding, 4) - self.up5 = D_UpBlock(base_filter, kernel, stride, padding, 4) - self.down5 = D_DownBlock(base_filter, kernel, stride, padding, 5) - self.up6 = D_UpBlock(base_filter, kernel, stride, padding, 5) - self.down6 = D_DownBlock(base_filter, kernel, stride, padding, 6) - self.up7 = D_UpBlock(base_filter, kernel, stride, padding, 6) - self.down7 = D_DownBlock(base_filter, kernel, stride, padding, 7) - self.up8 = D_UpBlock(base_filter, kernel, stride, padding, 7) - self.down8 = D_DownBlock(base_filter, kernel, stride, padding, 8) - self.up9 = D_UpBlock(base_filter, kernel, stride, padding, 8) - self.down9 = D_DownBlock(base_filter, kernel, stride, padding, 9) - self.up10 = D_UpBlock(base_filter, kernel, stride, padding, 9) - # Reconstruction - self.output_conv = ConvBlock(num_stages * base_filter, num_channels, 3, 1, - 1, activation=None, norm=None) - - for m in self.modules(): - classname = m.__class__.__name__ - if classname.find('Conv2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - elif classname.find('ConvTranspose2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x): - x = self.feat0(x) - x = self.feat1(x) - - h1 = self.up1(x) - l1 = self.down1(h1) - h2 = self.up2(l1) - - concat_h = torch.cat((h2, h1), 1) - l = self.down2(concat_h) - - concat_l = torch.cat((l, l1), 1) - h = self.up3(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down3(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up4(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down4(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up5(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down5(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up6(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down6(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up7(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down7(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up8(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down8(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up9(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - l = self.down9(concat_h) - - concat_l = torch.cat((l, concat_l), 1) - h = self.up10(concat_l) - - concat_h = torch.cat((h, concat_h), 1) - x = self.output_conv(concat_h) - - return x diff --git a/VSR/Backend/Torch/Models/dbpn/dbpns.py b/VSR/Backend/Torch/Models/dbpn/dbpns.py deleted file mode 100644 index 5abd946..0000000 --- a/VSR/Backend/Torch/Models/dbpn/dbpns.py +++ /dev/null @@ -1,56 +0,0 @@ -import torch.nn as nn - -from .base_networks import * - - -class Net(nn.Module): - def __init__(self, num_channels, base_filter, feat, num_stages, scale_factor): - super(Net, self).__init__() - - if scale_factor == 2: - kernel = 6 - stride = 2 - padding = 2 - elif scale_factor == 4: - kernel = 8 - stride = 4 - padding = 2 - elif scale_factor == 8: - kernel = 12 - stride = 8 - padding = 2 - - # Initial Feature Extraction - self.feat0 = ConvBlock(num_channels, feat, 3, 1, 1, activation='prelu', - norm=None) - self.feat1 = ConvBlock(feat, base_filter, 1, 1, 0, activation='prelu', - norm=None) - # Back-projection stages - self.up1 = UpBlock(base_filter, kernel, stride, padding) - self.down1 = DownBlock(base_filter, kernel, stride, padding) - self.up2 = UpBlock(base_filter, kernel, stride, padding) - # Reconstruction - self.output_conv = ConvBlock(num_stages * base_filter, num_channels, 3, 1, - 1, activation=None, norm=None) - - for m in self.modules(): - classname = m.__class__.__name__ - if classname.find('Conv2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - elif classname.find('ConvTranspose2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x): - x = self.feat0(x) - x = self.feat1(x) - - h1 = self.up1(x) - h2 = self.up2(self.down1(h1)) - - x = self.output_conv(torch.cat((h2, h1), 1)) - - return x diff --git a/VSR/Backend/Torch/Models/edsr/__init__.py b/VSR/Backend/Torch/Models/edsr/__init__.py deleted file mode 100644 index 403b726..0000000 --- a/VSR/Backend/Torch/Models/edsr/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 15 - -import logging -_logger = logging.getLogger("VSR.EDSR") -_logger.info("LICENSE: EDSR is implemented by Bee Lim. " - "@thstkdgus35 https://github.com/thstkdgus35/EDSR-PyTorch") diff --git a/VSR/Backend/Torch/Models/edsr/common.py b/VSR/Backend/Torch/Models/edsr/common.py deleted file mode 100644 index 427c69a..0000000 --- a/VSR/Backend/Torch/Models/edsr/common.py +++ /dev/null @@ -1,90 +0,0 @@ -import math - -import torch -import torch.nn as nn - - -def default_conv(in_channels, out_channels, kernel_size, bias=True): - return nn.Conv2d( - in_channels, out_channels, kernel_size, - padding=(kernel_size // 2), bias=bias) - - -class MeanShift(nn.Conv2d): - def __init__( - self, rgb_range, - rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1): - super(MeanShift, self).__init__(3, 3, kernel_size=1) - std = torch.Tensor(rgb_std) - self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1) - self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std - for p in self.parameters(): - p.requires_grad = False - - -class BasicBlock(nn.Sequential): - def __init__( - self, conv, in_channels, out_channels, kernel_size, stride=1, bias=False, - bn=True, act=nn.ReLU(True)): - - m = [conv(in_channels, out_channels, kernel_size, bias=bias)] - if bn: - m.append(nn.BatchNorm2d(out_channels)) - if act is not None: - m.append(act) - - super(BasicBlock, self).__init__(*m) - - -class ResBlock(nn.Module): - def __init__( - self, conv, n_feats, kernel_size, - bias=True, bn=False, act=nn.ReLU(True), res_scale=1): - - super(ResBlock, self).__init__() - m = [] - for i in range(2): - m.append(conv(n_feats, n_feats, kernel_size, bias=bias)) - if bn: - m.append(nn.BatchNorm2d(n_feats)) - if i == 0: - m.append(act) - - self.body = nn.Sequential(*m) - self.res_scale = res_scale - - def forward(self, x): - res = self.body(x).mul(self.res_scale) - res += x - - return res - - -class Upsampler(nn.Sequential): - def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True): - - m = [] - if (scale & (scale - 1)) == 0: # Is scale = 2^n? - for _ in range(int(math.log(scale, 2))): - m.append(conv(n_feats, 4 * n_feats, 3, bias)) - m.append(nn.PixelShuffle(2)) - if bn: - m.append(nn.BatchNorm2d(n_feats)) - if act == 'relu': - m.append(nn.ReLU(True)) - elif act == 'prelu': - m.append(nn.PReLU(n_feats)) - - elif scale == 3: - m.append(conv(n_feats, 9 * n_feats, 3, bias)) - m.append(nn.PixelShuffle(3)) - if bn: - m.append(nn.BatchNorm2d(n_feats)) - if act == 'relu': - m.append(nn.ReLU(True)) - elif act == 'prelu': - m.append(nn.PReLU(n_feats)) - else: - raise NotImplementedError - - super(Upsampler, self).__init__(*m) diff --git a/VSR/Backend/Torch/Models/edsr/edsr.py b/VSR/Backend/Torch/Models/edsr/edsr.py deleted file mode 100644 index 4a51beb..0000000 --- a/VSR/Backend/Torch/Models/edsr/edsr.py +++ /dev/null @@ -1,83 +0,0 @@ -import torch.nn as nn - -from . import common - -url = { - 'r16f64x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x2-1bc95232.pt', - 'r16f64x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x3-abf2a44e.pt', - 'r16f64x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x4-6b446fab.pt', - 'r32f256x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x2-0edfb8a3.pt', - 'r32f256x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x3-ea3ef2c6.pt', - 'r32f256x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x4-4f62e9ef.pt' -} - - -def make_model(args, parent=False): - return EDSR(args) - - -class EDSR(nn.Module): - def __init__(self, args, conv=common.default_conv): - super(EDSR, self).__init__() - - n_resblocks = args.n_resblocks - n_feats = args.n_feats - kernel_size = 3 - scale = args.scale[0] - act = nn.ReLU(True) - self.url = url['r{}f{}x{}'.format(n_resblocks, n_feats, scale)] - self.sub_mean = common.MeanShift(args.rgb_range) - self.add_mean = common.MeanShift(args.rgb_range, sign=1) - - # define head module - m_head = [conv(args.n_colors, n_feats, kernel_size)] - - # define body module - m_body = [ - common.ResBlock( - conv, n_feats, kernel_size, act=act, res_scale=args.res_scale - ) for _ in range(n_resblocks) - ] - m_body.append(conv(n_feats, n_feats, kernel_size)) - - # define tail module - m_tail = [ - common.Upsampler(conv, scale, n_feats, act=False), - conv(n_feats, args.n_colors, kernel_size) - ] - - self.head = nn.Sequential(*m_head) - self.body = nn.Sequential(*m_body) - self.tail = nn.Sequential(*m_tail) - - def forward(self, x): - x = self.sub_mean(x) - x = self.head(x) - - res = self.body(x) - res += x - - x = self.tail(res) - x = self.add_mean(x) - - return x - - def load_state_dict(self, state_dict, strict=True): - own_state = self.state_dict() - for name, param in state_dict.items(): - if name in own_state: - if isinstance(param, nn.Parameter): - param = param.data - try: - own_state[name].copy_(param) - except Exception: - if name.find('tail') == -1: - raise RuntimeError('While copying the parameter named {}, ' - 'whose dimensions in the model are {} and ' - 'whose dimensions in the checkpoint are {}.' - .format(name, own_state[name].size(), - param.size())) - elif strict: - if name.find('tail') == -1: - raise KeyError('unexpected key "{}" in state_dict' - .format(name)) diff --git a/VSR/Backend/Torch/Models/edsr/mdsr.py b/VSR/Backend/Torch/Models/edsr/mdsr.py deleted file mode 100644 index 3100913..0000000 --- a/VSR/Backend/Torch/Models/edsr/mdsr.py +++ /dev/null @@ -1,67 +0,0 @@ -import torch.nn as nn -from . import common - -url = { - 'r16f64': 'https://cv.snu.ac.kr/research/EDSR/models/mdsr_baseline-a00cab12.pt', - 'r80f64': 'https://cv.snu.ac.kr/research/EDSR/models/mdsr-4a78bedf.pt' -} - - -def make_model(args, parent=False): - return MDSR(args) - - -class MDSR(nn.Module): - def __init__(self, args, conv=common.default_conv): - super(MDSR, self).__init__() - n_resblocks = args.n_resblocks - n_feats = args.n_feats - kernel_size = 3 - act = nn.ReLU(True) - self.scale_idx = 0 - self.url = url['r{}f{}'.format(n_resblocks, n_feats)] - self.sub_mean = common.MeanShift(args.rgb_range) - self.add_mean = common.MeanShift(args.rgb_range, sign=1) - - m_head = [conv(args.n_colors, n_feats, kernel_size)] - - self.pre_process = nn.ModuleList([ - nn.Sequential( - common.ResBlock(conv, n_feats, 5, act=act), - common.ResBlock(conv, n_feats, 5, act=act) - ) for _ in args.scale - ]) - - m_body = [ - common.ResBlock( - conv, n_feats, kernel_size, act=act - ) for _ in range(n_resblocks) - ] - m_body.append(conv(n_feats, n_feats, kernel_size)) - - self.upsample = nn.ModuleList([ - common.Upsampler(conv, s, n_feats, act=False) for s in args.scale - ]) - - m_tail = [conv(n_feats, args.n_colors, kernel_size)] - - self.head = nn.Sequential(*m_head) - self.body = nn.Sequential(*m_body) - self.tail = nn.Sequential(*m_tail) - - def forward(self, x): - x = self.sub_mean(x) - x = self.head(x) - x = self.pre_process[self.scale_idx](x) - - res = self.body(x) - res += x - - x = self.upsample[self.scale_idx](res) - x = self.tail(x) - x = self.add_mean(x) - - return x - - def set_scale(self, scale_idx): - self.scale_idx = scale_idx diff --git a/VSR/Backend/Torch/Models/esrgan/__init__.py b/VSR/Backend/Torch/Models/esrgan/__init__.py deleted file mode 100644 index cd0b90d..0000000 --- a/VSR/Backend/Torch/Models/esrgan/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 15 - -import logging -_logger = logging.getLogger("VSR.ESRGAN") -_logger.info("LICENSE: ESRGAN is implemented by Xintao Wang. " - "@xinntao https://github.com/xinntao/ESRGAN") diff --git a/VSR/Backend/Torch/Models/esrgan/architecture.py b/VSR/Backend/Torch/Models/esrgan/architecture.py deleted file mode 100644 index 3bd9e5b..0000000 --- a/VSR/Backend/Torch/Models/esrgan/architecture.py +++ /dev/null @@ -1,48 +0,0 @@ -import math - -import torch.nn as nn - -from . import block as B - - -class RRDB_Net(nn.Module): - def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, - act_type='leakyrelu', mode='CNA', res_scale=1, - upsample_mode='upconv'): - super(RRDB_Net, self).__init__() - n_upscale = int(math.log(upscale, 2)) - if upscale == 3: - n_upscale = 1 - - fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, - act_type=None) - rb_blocks = [ - B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', - norm_type=norm_type, act_type=act_type, mode='CNA') for _ in - range(nb)] - LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, - act_type=None, mode=mode) - - if upsample_mode == 'upconv': - upsample_block = B.upconv_blcok - elif upsample_mode == 'pixelshuffle': - upsample_block = B.pixelshuffle_block - else: - raise NotImplementedError( - 'upsample mode [%s] is not found' % upsample_mode) - if upscale == 3: - upsampler = upsample_block(nf, nf, 3, act_type=act_type) - else: - upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in - range(n_upscale)] - HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, - act_type=act_type) - HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, - act_type=None) - - self.model = B.sequential(fea_conv, B.ShortcutBlock( - B.sequential(*rb_blocks, LR_conv)), *upsampler, HR_conv0, HR_conv1) - - def forward(self, x): - x = self.model(x) - return x diff --git a/VSR/Backend/Torch/Models/esrgan/block.py b/VSR/Backend/Torch/Models/esrgan/block.py deleted file mode 100644 index 7eef0e9..0000000 --- a/VSR/Backend/Torch/Models/esrgan/block.py +++ /dev/null @@ -1,286 +0,0 @@ -from collections import OrderedDict - -import torch -import torch.nn as nn - - -#################### -# Basic blocks -#################### - - -def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1): - # helper selecting activation - # neg_slope: for leakyrelu and init of prelu - # n_prelu: for p_relu num_parameters - act_type = act_type.lower() - if act_type == 'relu': - layer = nn.ReLU(inplace) - elif act_type == 'leakyrelu': - layer = nn.LeakyReLU(neg_slope, inplace) - elif act_type == 'prelu': - layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) - else: - raise NotImplementedError('activation layer [%s] is not found' % act_type) - return layer - - -def norm(norm_type, nc): - # helper selecting normalization layer - norm_type = norm_type.lower() - if norm_type == 'batch': - layer = nn.BatchNorm2d(nc, affine=True) - elif norm_type == 'instance': - layer = nn.InstanceNorm2d(nc, affine=False) - else: - raise NotImplementedError( - 'normalization layer [%s] is not found' % norm_type) - return layer - - -def pad(pad_type, padding): - # helper selecting padding layer - # if padding is 'zero', do by conv layers - pad_type = pad_type.lower() - if padding == 0: - return None - if pad_type == 'reflect': - layer = nn.ReflectionPad2d(padding) - elif pad_type == 'replicate': - layer = nn.ReplicationPad2d(padding) - else: - raise NotImplementedError( - 'padding layer [%s] is not implemented' % pad_type) - return layer - - -def get_valid_padding(kernel_size, dilation): - kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) - padding = (kernel_size - 1) // 2 - return padding - - -class ConcatBlock(nn.Module): - # Concat the output of a submodule to its input - def __init__(self, submodule): - super(ConcatBlock, self).__init__() - self.sub = submodule - - def forward(self, x): - output = torch.cat((x, self.sub(x)), dim=1) - return output - - def __repr__(self): - tmpstr = 'Identity .. \n|' - modstr = self.sub.__repr__().replace('\n', '\n|') - tmpstr = tmpstr + modstr - return tmpstr - - -class ShortcutBlock(nn.Module): - # Elementwise sum the output of a submodule to its input - def __init__(self, submodule): - super(ShortcutBlock, self).__init__() - self.sub = submodule - - def forward(self, x): - output = x + self.sub(x) - return output - - def __repr__(self): - tmpstr = 'Identity + \n|' - modstr = self.sub.__repr__().replace('\n', '\n|') - tmpstr = tmpstr + modstr - return tmpstr - - -def sequential(*args): - # Flatten Sequential. It unwraps nn.Sequential. - if len(args) == 1: - if isinstance(args[0], OrderedDict): - raise NotImplementedError( - 'sequential does not support OrderedDict input.') - return args[0] # No sequential is needed. - modules = [] - for module in args: - if isinstance(module, nn.Sequential): - for submodule in module.children(): - modules.append(submodule) - elif isinstance(module, nn.Module): - modules.append(module) - return nn.Sequential(*modules) - - -def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, - bias=True, - pad_type='zero', norm_type=None, act_type='relu', mode='CNA'): - """ - Conv layer with padding, normalization, activation - mode: CNA --> Conv -> Norm -> Act - NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) - """ - assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode - padding = get_valid_padding(kernel_size, dilation) - p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None - padding = padding if pad_type == 'zero' else 0 - - c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, - padding=padding, \ - dilation=dilation, bias=bias, groups=groups) - a = act(act_type) if act_type else None - if 'CNA' in mode: - n = norm(norm_type, out_nc) if norm_type else None - return sequential(p, c, n, a) - elif mode == 'NAC': - if norm_type is None and act_type is not None: - a = act(act_type, inplace=False) - # Important! - # input----ReLU(inplace)----Conv--+----output - # |________________________| - # inplace ReLU will modify the input, therefore wrong output - n = norm(norm_type, in_nc) if norm_type else None - return sequential(n, a, p, c) - - -#################### -# Useful blocks -#################### - - -class ResNetBlock(nn.Module): - """ - ResNet Block, 3-3 style - with extra residual scaling used in EDSR - (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17) - """ - - def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, - groups=1, \ - bias=True, pad_type='zero', norm_type=None, act_type='relu', - mode='CNA', res_scale=1): - super(ResNetBlock, self).__init__() - conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, - bias, pad_type, \ - norm_type, act_type, mode) - if mode == 'CNA': - act_type = None - if mode == 'CNAC': # Residual path: |-CNAC-| - act_type = None - norm_type = None - conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, - bias, pad_type, \ - norm_type, act_type, mode) - # if in_nc != out_nc: - # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \ - # None, None) - # print('Need a projecter in ResNetBlock.') - # else: - # self.project = lambda x:x - self.res = sequential(conv0, conv1) - self.res_scale = res_scale - - def forward(self, x): - res = self.res(x).mul(self.res_scale) - return x + res - - -class ResidualDenseBlock_5C(nn.Module): - """ - Residual Dense Block - style: 5 convs - The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) - """ - - def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, - pad_type='zero', \ - norm_type=None, act_type='leakyrelu', mode='CNA'): - super(ResidualDenseBlock_5C, self).__init__() - # gc: growth channel, i.e. intermediate channels - self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, - pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv2 = conv_block(nc + gc, gc, kernel_size, stride, bias=bias, - pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv3 = conv_block(nc + 2 * gc, gc, kernel_size, stride, bias=bias, - pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv4 = conv_block(nc + 3 * gc, gc, kernel_size, stride, bias=bias, - pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - if mode == 'CNA': - last_act = None - else: - last_act = act_type - self.conv5 = conv_block(nc + 4 * gc, nc, 3, stride, bias=bias, - pad_type=pad_type, \ - norm_type=norm_type, act_type=last_act, mode=mode) - - def forward(self, x): - x1 = self.conv1(x) - x2 = self.conv2(torch.cat((x, x1), 1)) - x3 = self.conv3(torch.cat((x, x1, x2), 1)) - x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - return x5.mul(0.2) + x - - -class RRDB(nn.Module): - """ - Residual in Residual Dense Block - """ - - def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, - pad_type='zero', \ - norm_type=None, act_type='leakyrelu', mode='CNA'): - super(RRDB, self).__init__() - self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, - pad_type, \ - norm_type, act_type, mode) - self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, - pad_type, \ - norm_type, act_type, mode) - self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, - pad_type, \ - norm_type, act_type, mode) - - def forward(self, x): - out = self.RDB1(x) - out = self.RDB2(out) - out = self.RDB3(out) - return out.mul(0.2) + x - - -#################### -# Upsampler -#################### - - -def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, - bias=True, - pad_type='zero', norm_type=None, act_type='relu'): - """ - Pixel shuffle layer - (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional - Neural Network, CVPR17) - """ - conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, - bias=bias, - pad_type=pad_type, norm_type=None, act_type=None) - pixel_shuffle = nn.PixelShuffle(upscale_factor) - - n = norm(norm_type, out_nc) if norm_type else None - a = act(act_type) if act_type else None - return sequential(conv, pixel_shuffle, n, a) - - -def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, - bias=True, - pad_type='zero', norm_type=None, act_type='relu', - mode='nearest'): - # Up conv - # described in https://distill.pub/2016/deconv-checkerboard/ - upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode) - conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, - pad_type=pad_type, norm_type=norm_type, act_type=act_type) - return sequential(upsample, conv) diff --git a/VSR/Backend/Torch/Models/frvsr/__init__.py b/VSR/Backend/Torch/Models/frvsr/__init__.py deleted file mode 100644 index c588d47..0000000 --- a/VSR/Backend/Torch/Models/frvsr/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/4 下午8:51 diff --git a/VSR/Backend/Torch/Models/frvsr/ops.py b/VSR/Backend/Torch/Models/frvsr/ops.py deleted file mode 100644 index d4f7ce2..0000000 --- a/VSR/Backend/Torch/Models/frvsr/ops.py +++ /dev/null @@ -1,72 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/4 下午8:51 - -import torch -from torch import nn -from torch.nn.functional import interpolate -from ..Arch import Upsample - - -class BilinerUp(nn.Module): - def __init__(self, scale_factor): - super(BilinerUp, self).__init__() - self.scale = scale_factor - - def forward(self, x): - return interpolate(x, scale_factor=self.scale, - mode='bilinear', align_corners=False) - - -class FNet(nn.Module): - def __init__(self, channel, gain=32): - super(FNet, self).__init__() - f = 32 - layers = [] - in_c = channel * 2 - for i in range(3): - layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] - layers += [nn.Conv2d(f, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] - layers += [nn.MaxPool2d(2)] - in_c = f - f *= 2 - for i in range(3): - layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] - layers += [nn.Conv2d(f, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] - layers += [BilinerUp(2)] - in_c = f - f //= 2 - layers += [nn.Conv2d(in_c, f, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True)] - layers += [nn.Conv2d(f, 2, 3, 1, 1), nn.Tanh()] - self.body = nn.Sequential(*layers) - self.gain = gain - - def forward(self, *inputs): - x = torch.cat(inputs, dim=1) - return self.body(x) * self.gain - - -class RB(nn.Module): - def __init__(self, channel): - super(RB, self).__init__() - conv1 = nn.Conv2d(channel, channel, 3, 1, 1) - conv2 = nn.Conv2d(channel, channel, 3, 1, 1) - self.body = nn.Sequential(conv1, nn.ReLU(True), conv2) - - def forward(self, x): - return x + self.body(x) - - -class SRNet(nn.Module): - def __init__(self, channel, scale, n_rb=10): - super(SRNet, self).__init__() - rbs = [RB(64) for _ in range(n_rb)] - entry = [nn.Conv2d(channel * (scale ** 2 + 1), 64, 3, 1, 1), nn.ReLU(True)] - up = Upsample(64, scale, method='ps') - out = nn.Conv2d(64, channel, 3, 1, 1) - self.body = nn.Sequential(*entry, *rbs, up, out) - - def forward(self, *inputs): - x = torch.cat(inputs, dim=1) - return self.body(x) diff --git a/VSR/Backend/Torch/Models/msrn/__init__.py b/VSR/Backend/Torch/Models/msrn/__init__.py deleted file mode 100644 index 163f12b..0000000 --- a/VSR/Backend/Torch/Models/msrn/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 15 - -import logging -_logger = logging.getLogger("VSR.MSRN") -_logger.info("LICENSE: MSRN is implemented by Juncheng Li. " - "@MIVRC https://github.com/MIVRC/MSRN-PyTorch") diff --git a/VSR/Backend/Torch/Models/msrn/msrn.py b/VSR/Backend/Torch/Models/msrn/msrn.py deleted file mode 100644 index 9540d0e..0000000 --- a/VSR/Backend/Torch/Models/msrn/msrn.py +++ /dev/null @@ -1,118 +0,0 @@ -import torch -import torch.nn as nn - -from ..rcan import common - - -def make_model(args, parent=False): - return MSRN(args) - - -class MSRB(nn.Module): - def __init__(self, conv=common.default_conv, n_feats=64): - super(MSRB, self).__init__() - - kernel_size_1 = 3 - kernel_size_2 = 5 - - self.conv_3_1 = conv(n_feats, n_feats, kernel_size_1) - self.conv_3_2 = conv(n_feats * 2, n_feats * 2, kernel_size_1) - self.conv_5_1 = conv(n_feats, n_feats, kernel_size_2) - self.conv_5_2 = conv(n_feats * 2, n_feats * 2, kernel_size_2) - self.confusion = nn.Conv2d(n_feats * 4, n_feats, 1, padding=0, stride=1) - self.relu = nn.ReLU(inplace=True) - - def forward(self, x): - input_1 = x - output_3_1 = self.relu(self.conv_3_1(input_1)) - output_5_1 = self.relu(self.conv_5_1(input_1)) - input_2 = torch.cat([output_3_1, output_5_1], 1) - output_3_2 = self.relu(self.conv_3_2(input_2)) - output_5_2 = self.relu(self.conv_5_2(input_2)) - input_3 = torch.cat([output_3_2, output_5_2], 1) - output = self.confusion(input_3) - output += x - return output - - -class MSRN(nn.Module): - def __init__(self, args, conv=common.default_conv): - super(MSRN, self).__init__() - - n_feats = 64 - n_blocks = 8 - kernel_size = 3 - scale = args.scale[0] - act = nn.ReLU(True) - - self.n_blocks = n_blocks - - # RGB mean for DIV2K - rgb_mean = (0.4488, 0.4371, 0.4040) - rgb_std = (1.0, 1.0, 1.0) - self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std) - - # define head module - modules_head = [conv(args.n_colors, n_feats, kernel_size)] - - # define body module - modules_body = nn.ModuleList() - for i in range(n_blocks): - modules_body.append( - MSRB(n_feats=n_feats)) - - # define tail module - modules_tail = [ - nn.Conv2d(n_feats * (self.n_blocks + 1), n_feats, 1, padding=0, stride=1), - conv(n_feats, n_feats, kernel_size), - common.Upsampler(conv, scale, n_feats, act=False), - conv(n_feats, args.n_colors, kernel_size)] - - self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1) - - self.head = nn.Sequential(*modules_head) - self.body = nn.Sequential(*modules_body) - self.tail = nn.Sequential(*modules_tail) - - def forward(self, x): - x = self.sub_mean(x) - x = self.head(x) - res = x - - MSRB_out = [] - for i in range(self.n_blocks): - x = self.body[i](x) - MSRB_out.append(x) - MSRB_out.append(res) - - res = torch.cat(MSRB_out, 1) - x = self.tail(res) - x = self.add_mean(x) - return x - - def load_state_dict(self, state_dict, strict=False): - own_state = self.state_dict() - for name, param in state_dict.items(): - if name in own_state: - if isinstance(param, nn.Parameter): - param = param.data - try: - own_state[name].copy_(param) - except Exception: - if name.find('tail') >= 0: - print('Replace pre-trained upsampler to new one...') - else: - raise RuntimeError('While copying the parameter named {}, ' - 'whose dimensions in the model are {} and ' - 'whose dimensions in the checkpoint are {}.' - .format(name, own_state[name].size(), - param.size())) - elif strict: - if name.find('tail') == -1: - raise KeyError('unexpected key "{}" in state_dict' - .format(name)) - - if strict: - missing = set(own_state.keys()) - set(state_dict.keys()) - if len(missing) > 0: - raise KeyError('missing keys in state_dict: "{}"'.format(missing)) diff --git a/VSR/Backend/Torch/Models/rbpn/__init__.py b/VSR/Backend/Torch/Models/rbpn/__init__.py deleted file mode 100644 index 2c3ea08..0000000 --- a/VSR/Backend/Torch/Models/rbpn/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/5/25 下午4:38 - -import logging - -_logger = logging.getLogger("VSR.RBPN") -_logger.info("LICENSE: RBPN is implemented by M. Haris, et. al. @alterzero") -_logger.warning( - "I use unsupervised flownet to estimate optical flow, rather than pyflow module.") diff --git a/VSR/Backend/Torch/Models/rbpn/base_network.py b/VSR/Backend/Torch/Models/rbpn/base_network.py deleted file mode 100644 index df69c9f..0000000 --- a/VSR/Backend/Torch/Models/rbpn/base_network.py +++ /dev/null @@ -1,413 +0,0 @@ -import math -import torch - - -class DenseBlock(torch.nn.Module): - def __init__(self, input_size, output_size, bias=True, activation='relu', - norm='batch'): - super(DenseBlock, self).__init__() - self.fc = torch.nn.Linear(input_size, output_size, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm1d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm1d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.fc(x)) - else: - out = self.fc(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class ConvBlock(torch.nn.Module): - def __init__(self, input_size, output_size, kernel_size=3, stride=1, - padding=1, bias=True, activation='prelu', norm=None): - super(ConvBlock, self).__init__() - self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, - padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.conv(x)) - else: - out = self.conv(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class DeconvBlock(torch.nn.Module): - def __init__(self, input_size, output_size, kernel_size=4, stride=2, - padding=1, bias=True, activation='prelu', norm=None): - super(DeconvBlock, self).__init__() - self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, - stride, padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif self.norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.deconv(x)) - else: - out = self.deconv(x) - - if self.activation is not None: - return self.act(out) - else: - return out - - -class ResnetBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=3, stride=1, padding=1, bias=True, - activation='prelu', norm='batch'): - super(ResnetBlock, self).__init__() - self.conv1 = torch.nn.Conv2d(num_filter, num_filter, kernel_size, stride, - padding, bias=bias) - self.conv2 = torch.nn.Conv2d(num_filter, num_filter, kernel_size, stride, - padding, bias=bias) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(num_filter) - elif norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(num_filter) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - residual = x - if self.norm is not None: - out = self.bn(self.conv1(x)) - else: - out = self.conv1(x) - - if self.activation is not None: - out = self.act(out) - - if self.norm is not None: - out = self.bn(self.conv2(out)) - else: - out = self.conv2(out) - - out = torch.add(out, residual) - - if self.activation is not None: - out = self.act(out) - - return out - - -class UpBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias=True, - activation='prelu', norm=None): - super(UpBlock, self).__init__() - self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class UpBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, scale=4, - bias=True, activation='prelu', norm=None): - super(UpBlockPix, self).__init__() - self.up_conv1 = Upsampler(scale, num_filter) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = Upsampler(scale, num_filter) - - def forward(self, x): - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class D_UpBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, bias=True, activation='prelu', norm=None): - super(D_UpBlock, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class D_UpBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, scale=4, bias=True, activation='prelu', norm=None): - super(D_UpBlockPix, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.up_conv1 = Upsampler(scale, num_filter) - self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.up_conv3 = Upsampler(scale, num_filter) - - def forward(self, x): - x = self.conv(x) - h0 = self.up_conv1(x) - l0 = self.up_conv2(h0) - h1 = self.up_conv3(l0 - x) - return h1 + h0 - - -class DownBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias=True, - activation='prelu', norm=None): - super(DownBlock, self).__init__() - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class DownBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, scale=4, - bias=True, activation='prelu', norm=None): - super(DownBlockPix, self).__init__() - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = Upsampler(scale, num_filter) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class D_DownBlock(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, bias=True, activation='prelu', norm=None): - super(D_DownBlock, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class D_DownBlockPix(torch.nn.Module): - def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, - num_stages=1, scale=4, bias=True, activation='prelu', norm=None): - super(D_DownBlockPix, self).__init__() - self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, - activation, norm=None) - self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - self.down_conv2 = Upsampler(scale, num_filter) - self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, - padding, activation, norm=None) - - def forward(self, x): - x = self.conv(x) - l0 = self.down_conv1(x) - h0 = self.down_conv2(l0) - l1 = self.down_conv3(h0 - x) - return l1 + l0 - - -class PSBlock(torch.nn.Module): - def __init__(self, input_size, output_size, scale_factor, kernel_size=3, - stride=1, padding=1, bias=True, activation='prelu', - norm='batch'): - super(PSBlock, self).__init__() - self.conv = torch.nn.Conv2d(input_size, output_size * scale_factor ** 2, - kernel_size, stride, padding, bias=bias) - self.ps = torch.nn.PixelShuffle(scale_factor) - - self.norm = norm - if self.norm == 'batch': - self.bn = torch.nn.BatchNorm2d(output_size) - elif norm == 'instance': - self.bn = torch.nn.InstanceNorm2d(output_size) - - self.activation = activation - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - if self.norm is not None: - out = self.bn(self.ps(self.conv(x))) - else: - out = self.ps(self.conv(x)) - - if self.activation is not None: - out = self.act(out) - return out - - -class Upsampler(torch.nn.Module): - def __init__(self, scale, n_feat, bn=False, act='prelu', bias=True): - super(Upsampler, self).__init__() - modules = [] - for _ in range(int(math.log(scale, 2))): - modules.append( - ConvBlock(n_feat, 4 * n_feat, 3, 1, 1, bias, activation=None, - norm=None)) - modules.append(torch.nn.PixelShuffle(2)) - if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) - # modules.append(torch.nn.PReLU()) - self.up = torch.nn.Sequential(*modules) - - self.activation = act - if self.activation == 'relu': - self.act = torch.nn.ReLU(True) - elif self.activation == 'prelu': - self.act = torch.nn.PReLU() - elif self.activation == 'lrelu': - self.act = torch.nn.LeakyReLU(0.2, True) - elif self.activation == 'tanh': - self.act = torch.nn.Tanh() - elif self.activation == 'sigmoid': - self.act = torch.nn.Sigmoid() - - def forward(self, x): - out = self.up(x) - if self.activation is not None: - out = self.act(out) - return out - - -class Upsample2xBlock(torch.nn.Module): - def __init__(self, input_size, output_size, bias=True, upsample='deconv', - activation='relu', norm='batch'): - super(Upsample2xBlock, self).__init__() - scale_factor = 2 - # 1. Deconvolution (Transposed convolution) - if upsample == 'deconv': - self.upsample = DeconvBlock(input_size, output_size, - kernel_size=4, stride=2, padding=1, - bias=bias, activation=activation, norm=norm) - - # 2. Sub-pixel convolution (Pixel shuffler) - elif upsample == 'ps': - self.upsample = PSBlock(input_size, output_size, - scale_factor=scale_factor, - bias=bias, activation=activation, norm=norm) - - # 3. Resize and Convolution - elif upsample == 'rnc': - self.upsample = torch.nn.Sequential( - torch.nn.Upsample(scale_factor=scale_factor, mode='nearest'), - ConvBlock(input_size, output_size, - kernel_size=3, stride=1, padding=1, - bias=bias, activation=activation, norm=norm) - ) - - def forward(self, x): - out = self.upsample(x) - return out diff --git a/VSR/Backend/Torch/Models/rbpn/ops.py b/VSR/Backend/Torch/Models/rbpn/ops.py deleted file mode 100644 index 95a7bb5..0000000 --- a/VSR/Backend/Torch/Models/rbpn/ops.py +++ /dev/null @@ -1,157 +0,0 @@ -import torch.nn as nn - -from .base_network import * - - -class Dbpns(nn.Module): - def __init__(self, base_filter, feat, num_stages, scale_factor): - super(Dbpns, self).__init__() - - if scale_factor == 2: - kernel = 6 - stride = 2 - padding = 2 - elif scale_factor == 4: - kernel = 8 - stride = 4 - padding = 2 - elif scale_factor == 8: - kernel = 12 - stride = 8 - padding = 2 - - # Initial Feature Extraction - # self.feat0 = ConvBlock(num_channels, feat, 3, 1, 1, activation='prelu', norm=None) - self.feat1 = ConvBlock(base_filter, feat, 1, 1, 0, activation='prelu', - norm=None) - # Back-projection stages - self.up1 = UpBlock(feat, kernel, stride, padding) - self.down1 = DownBlock(feat, kernel, stride, padding) - self.up2 = UpBlock(feat, kernel, stride, padding) - self.down2 = DownBlock(feat, kernel, stride, padding) - self.up3 = UpBlock(feat, kernel, stride, padding) - # Reconstruction - self.output = ConvBlock(num_stages * feat, feat, 1, 1, 0, activation=None, - norm=None) - - for m in self.modules(): - classname = m.__class__.__name__ - if classname.find('Conv2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - elif classname.find('ConvTranspose2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x): - # x = self.feat0(x) - x = self.feat1(x) - - h1 = self.up1(x) - h2 = self.up2(self.down1(h1)) - h3 = self.up3(self.down2(h2)) - - x = self.output(torch.cat((h3, h2, h1), 1)) - - return x - - -class Rbpn(nn.Module): - def __init__(self, num_channels, base_filter, feat, num_stages, n_resblock, - nFrames, scale_factor): - super(Rbpn, self).__init__() - # base_filter=256 - # feat=64 - self.nFrames = nFrames - - if scale_factor == 2: - kernel = 6 - stride = 2 - padding = 2 - elif scale_factor == 4: - kernel = 8 - stride = 4 - padding = 2 - elif scale_factor == 8: - kernel = 12 - stride = 8 - padding = 2 - - # Initial Feature Extraction - self.feat0 = ConvBlock(num_channels, base_filter, 3, 1, 1, - activation='prelu', norm=None) - self.feat1 = ConvBlock(8, base_filter, 3, 1, 1, activation='prelu', - norm=None) - - ###DBPNS - self.DBPN = Dbpns(base_filter, feat, num_stages, scale_factor) - - # Res-Block1 - modules_body1 = [ - ResnetBlock(base_filter, kernel_size=3, stride=1, padding=1, bias=True, - activation='prelu', norm=None) \ - for _ in range(n_resblock)] - modules_body1.append( - DeconvBlock(base_filter, feat, kernel, stride, padding, - activation='prelu', norm=None)) - self.res_feat1 = nn.Sequential(*modules_body1) - - # Res-Block2 - modules_body2 = [ - ResnetBlock(feat, kernel_size=3, stride=1, padding=1, bias=True, - activation='prelu', norm=None) \ - for _ in range(n_resblock)] - modules_body2.append( - ConvBlock(feat, feat, 3, 1, 1, activation='prelu', norm=None)) - self.res_feat2 = nn.Sequential(*modules_body2) - - # Res-Block3 - modules_body3 = [ - ResnetBlock(feat, kernel_size=3, stride=1, padding=1, bias=True, - activation='prelu', norm=None) \ - for _ in range(n_resblock)] - modules_body3.append(ConvBlock(feat, base_filter, kernel, stride, padding, - activation='prelu', norm=None)) - self.res_feat3 = nn.Sequential(*modules_body3) - - # Reconstruction - self.output = ConvBlock((nFrames - 1) * feat, num_channels, 3, 1, 1, - activation=None, norm=None) - - for m in self.modules(): - classname = m.__class__.__name__ - if classname.find('Conv2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - elif classname.find('ConvTranspose2d') != -1: - torch.nn.init.kaiming_normal_(m.weight) - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x, neigbor, flow): - ### initial feature extraction - feat_input = self.feat0(x) - feat_frame = [] - for j in range(len(neigbor)): - feat_frame.append(self.feat1(torch.cat((x, neigbor[j], flow[j]), 1))) - - ####Projection - Ht = [] - for j in range(len(neigbor)): - h0 = self.DBPN(feat_input) - h1 = self.res_feat1(feat_frame[j]) - - e = h0 - h1 - e = self.res_feat2(e) - h = h0 + e - Ht.append(h) - feat_input = self.res_feat3(h) - - ####Reconstruction - out = torch.cat(Ht, 1) - output = self.output(out) - - return output diff --git a/VSR/Backend/Torch/Models/rcan/__init__.py b/VSR/Backend/Torch/Models/rcan/__init__.py deleted file mode 100644 index a910893..0000000 --- a/VSR/Backend/Torch/Models/rcan/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 15 - -import logging -_logger = logging.getLogger("VSR.RCAN") -_logger.info("LICENSE: RCAN is implemented by Yulun Zhang. " - "@yulunzhang https://github.com/yulunzhang/RCAN.") diff --git a/VSR/Backend/Torch/Models/rcan/common.py b/VSR/Backend/Torch/Models/rcan/common.py deleted file mode 100644 index 8aa0cee..0000000 --- a/VSR/Backend/Torch/Models/rcan/common.py +++ /dev/null @@ -1,78 +0,0 @@ -import math - -import torch -import torch.nn as nn - - -def default_conv(in_channels, out_channels, kernel_size, bias=True): - return nn.Conv2d( - in_channels, out_channels, kernel_size, - padding=(kernel_size // 2), bias=bias) - - -class MeanShift(nn.Conv2d): - def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): - super(MeanShift, self).__init__(3, 3, kernel_size=1) - std = torch.Tensor(rgb_std) - self.weight.data = torch.eye(3).view(3, 3, 1, 1) - self.weight.data.div_(std.view(3, 1, 1, 1)) - self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) - self.bias.data.div_(std) - self.requires_grad = False - - -class BasicBlock(nn.Sequential): - def __init__( - self, in_channels, out_channels, kernel_size, stride=1, bias=False, - bn=True, act=nn.ReLU(True)): - - m = [nn.Conv2d( - in_channels, out_channels, kernel_size, - padding=(kernel_size // 2), stride=stride, bias=bias) - ] - if bn: m.append(nn.BatchNorm2d(out_channels)) - if act is not None: m.append(act) - super(BasicBlock, self).__init__(*m) - - -class ResBlock(nn.Module): - def __init__( - self, conv, n_feat, kernel_size, - bias=True, bn=False, act=nn.ReLU(True), res_scale=1): - - super(ResBlock, self).__init__() - m = [] - for i in range(2): - m.append(conv(n_feat, n_feat, kernel_size, bias=bias)) - if bn: m.append(nn.BatchNorm2d(n_feat)) - if i == 0: m.append(act) - - self.body = nn.Sequential(*m) - self.res_scale = res_scale - - def forward(self, x): - res = self.body(x).mul(self.res_scale) - res += x - - return res - - -class Upsampler(nn.Sequential): - def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True): - - m = [] - if (scale & (scale - 1)) == 0: # Is scale = 2^n? - for _ in range(int(math.log(scale, 2))): - m.append(conv(n_feat, 4 * n_feat, 3, bias)) - m.append(nn.PixelShuffle(2)) - if bn: m.append(nn.BatchNorm2d(n_feat)) - if act: m.append(act()) - elif scale == 3: - m.append(conv(n_feat, 9 * n_feat, 3, bias)) - m.append(nn.PixelShuffle(3)) - if bn: m.append(nn.BatchNorm2d(n_feat)) - if act: m.append(act()) - else: - raise NotImplementedError - - super(Upsampler, self).__init__(*m) diff --git a/VSR/Backend/Torch/Models/rcan/rcan.py b/VSR/Backend/Torch/Models/rcan/rcan.py deleted file mode 100644 index 02b2488..0000000 --- a/VSR/Backend/Torch/Models/rcan/rcan.py +++ /dev/null @@ -1,151 +0,0 @@ -import torch.nn as nn - -from . import common - - -def make_model(args, parent=False): - return RCAN(args) - - -## Channel Attention (CA) Layer -class CALayer(nn.Module): - def __init__(self, channel, reduction=16): - super(CALayer, self).__init__() - # global average pooling: feature --> point - self.avg_pool = nn.AdaptiveAvgPool2d(1) - # feature channel downscale and upscale --> channel weight - self.conv_du = nn.Sequential( - nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True), - nn.ReLU(inplace=True), - nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True), - nn.Sigmoid() - ) - - def forward(self, x): - y = self.avg_pool(x) - y = self.conv_du(y) - return x * y - - -## Residual Channel Attention Block (RCAB) -class RCAB(nn.Module): - def __init__( - self, conv, n_feat, kernel_size, reduction, - bias=True, bn=False, act=nn.ReLU(True), res_scale=1): - - super(RCAB, self).__init__() - modules_body = [] - for i in range(2): - modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias)) - if bn: modules_body.append(nn.BatchNorm2d(n_feat)) - if i == 0: modules_body.append(act) - modules_body.append(CALayer(n_feat, reduction)) - self.body = nn.Sequential(*modules_body) - self.res_scale = res_scale - - def forward(self, x): - res = self.body(x) - # res = self.body(x).mul(self.res_scale) - res += x - return res - - -## Residual Group (RG) -class ResidualGroup(nn.Module): - def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, - n_resblocks): - super(ResidualGroup, self).__init__() - modules_body = [] - modules_body = [ - RCAB( - conv, n_feat, kernel_size, reduction, bias=True, bn=False, - act=nn.ReLU(True), res_scale=1) \ - for _ in range(n_resblocks)] - modules_body.append(conv(n_feat, n_feat, kernel_size)) - self.body = nn.Sequential(*modules_body) - - def forward(self, x): - res = self.body(x) - res += x - return res - - -## Residual Channel Attention Network (RCAN) -class RCAN(nn.Module): - def __init__(self, args, conv=common.default_conv): - super(RCAN, self).__init__() - - n_resgroups = args.n_resgroups - n_resblocks = args.n_resblocks - n_feats = args.n_feats - kernel_size = 3 - reduction = args.reduction - scale = args.scale[0] - act = nn.ReLU(True) - - # RGB mean for DIV2K - rgb_mean = (0.4488, 0.4371, 0.4040) - rgb_std = (1.0, 1.0, 1.0) - self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std) - - # define head module - modules_head = [conv(args.n_colors, n_feats, kernel_size)] - - # define body module - modules_body = [ - ResidualGroup( - conv, n_feats, kernel_size, reduction, act=act, - res_scale=args.res_scale, n_resblocks=n_resblocks) \ - for _ in range(n_resgroups)] - - modules_body.append(conv(n_feats, n_feats, kernel_size)) - - # define tail module - modules_tail = [ - common.Upsampler(conv, scale, n_feats, act=False), - conv(n_feats, args.n_colors, kernel_size)] - - self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1) - - self.head = nn.Sequential(*modules_head) - self.body = nn.Sequential(*modules_body) - self.tail = nn.Sequential(*modules_tail) - - def forward(self, x): - x = self.sub_mean(x) - x = self.head(x) - - res = self.body(x) - res += x - - x = self.tail(res) - x = self.add_mean(x) - - return x - - def load_state_dict(self, state_dict, strict=False): - own_state = self.state_dict() - for name, param in state_dict.items(): - if name in own_state: - if isinstance(param, nn.Parameter): - param = param.data - try: - own_state[name].copy_(param) - except Exception: - if name.find('tail') >= 0: - print('Replace pre-trained upsampler to new one...') - else: - raise RuntimeError('While copying the parameter named {}, ' - 'whose dimensions in the model are {} and ' - 'whose dimensions in the checkpoint are {}.' - .format(name, own_state[name].size(), - param.size())) - elif strict: - if name.find('tail') == -1: - raise KeyError('unexpected key "{}" in state_dict' - .format(name)) - - if strict: - missing = set(own_state.keys()) - set(state_dict.keys()) - if len(missing) > 0: - raise KeyError('missing keys in state_dict: "{}"'.format(missing)) diff --git a/VSR/Backend/Torch/Models/sof/__init__.py b/VSR/Backend/Torch/Models/sof/__init__.py deleted file mode 100644 index c935ba4..0000000 --- a/VSR/Backend/Torch/Models/sof/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019 - 3 - 22 - -import logging -_logger = logging.getLogger("VSR.SOF") -_logger.info("LICENSE: SOF-VSR is implemented by Longguan Wang. " - "@LongguanWang https://github.com/LongguangWang/SOF-VSR.") diff --git a/VSR/Backend/Torch/Models/sof/modules.py b/VSR/Backend/Torch/Models/sof/modules.py deleted file mode 100644 index 7e5fa2a..0000000 --- a/VSR/Backend/Torch/Models/sof/modules.py +++ /dev/null @@ -1,201 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.autograd import Variable - - -def optical_flow_warp(image, image_optical_flow): - """ - Arguments - image_ref: reference images tensor, (b, c, h, w) - image_optical_flow: optical flow to image_ref (b, 2, h, w) - """ - b, _, h, w = image.size() - grid = np.meshgrid(range(w), range(h)) - grid = np.stack(grid, axis=-1).astype(np.float64) - grid[:, :, 0] = grid[:, :, 0] * 2 / (w - 1) - 1 - grid[:, :, 1] = grid[:, :, 1] * 2 / (h - 1) - 1 - grid = grid.transpose(2, 0, 1) - grid = np.tile(grid, (b, 1, 1, 1)) - grid = Variable(torch.Tensor(grid)) - if image_optical_flow.is_cuda == True: - grid = grid.cuda() - - flow_0 = torch.unsqueeze(image_optical_flow[:, 0, :, :] * 31 / (w - 1), dim=1) - flow_1 = torch.unsqueeze(image_optical_flow[:, 1, :, :] * 31 / (h - 1), dim=1) - grid = grid + torch.cat((flow_0, flow_1), 1) - grid = grid.transpose(1, 2) - grid = grid.transpose(3, 2) - output = F.grid_sample(image, grid, padding_mode='border') - return output - - -class make_dense(nn.Module): - def __init__(self, channels_in, channels_out, kernel_size=3): - super(make_dense, self).__init__() - self.leaky_relu = nn.LeakyReLU(0.1, inplace=True) - self.conv = nn.Conv2d(channels_in, channels_out, kernel_size=kernel_size, - padding=(kernel_size - 1) // 2, - bias=False) - - def forward(self, x): - out = self.leaky_relu(self.conv(x)) - out = torch.cat((x, out), 1) - return out - - -class RDB(nn.Module): - def __init__(self, nDenselayer, channels, growth): - super(RDB, self).__init__() - modules = [] - channels_buffer = channels - for i in range(nDenselayer): - modules.append(make_dense(channels_buffer, growth)) - channels_buffer += growth - self.dense_layers = nn.Sequential(*modules) - self.conv_1x1 = nn.Conv2d(channels_buffer, channels, kernel_size=1, - padding=0, bias=False) - - def forward(self, x): - out = self.dense_layers(x) - out = self.conv_1x1(out) - out = out + x - return out - - -class OFRnet(nn.Module): - def __init__(self, upscale_factor): - super(OFRnet, self).__init__() - self.pool = nn.AvgPool2d(kernel_size=2) - self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', - align_corners=False) - self.final_upsample = nn.Upsample(scale_factor=upscale_factor, - mode='bilinear', align_corners=False) - self.shuffle = nn.PixelShuffle(upscale_factor) - self.upscale_factor = upscale_factor - # Level 1 - self.conv_L1_1 = nn.Conv2d(2, 32, 3, 1, 1, bias=False) - self.RDB1_1 = RDB(4, 32, 32) - self.RDB1_2 = RDB(4, 32, 32) - self.bottleneck_L1 = nn.Conv2d(64, 2, 3, 1, 1, bias=False) - self.conv_L1_2 = nn.Conv2d(2, 2, 3, 1, 1, bias=True) - # Level 2 - self.conv_L2_1 = nn.Conv2d(6, 32, 3, 1, 1, bias=False) - self.RDB2_1 = RDB(4, 32, 32) - self.RDB2_2 = RDB(4, 32, 32) - self.bottleneck_L2 = nn.Conv2d(64, 2, 3, 1, 1, bias=False) - self.conv_L2_2 = nn.Conv2d(2, 2, 3, 1, 1, bias=True) - # Level 3 - self.conv_L3_1 = nn.Conv2d(6, 32, 3, 1, 1, bias=False) - self.RDB3_1 = RDB(4, 32, 32) - self.RDB3_2 = RDB(4, 32, 32) - self.bottleneck_L3 = nn.Conv2d(64, 2 * upscale_factor ** 2, 3, 1, 1, - bias=False) - self.conv_L3_2 = nn.Conv2d(2 * upscale_factor ** 2, 2 * upscale_factor ** 2, - 3, 1, 1, bias=True) - - def forward(self, x): - # Level 1 - x_L1 = self.pool(x) - _, _, h, w = x_L1.size() - input_L1 = self.conv_L1_1(x_L1) - buffer_1 = self.RDB1_1(input_L1) - buffer_2 = self.RDB1_2(buffer_1) - buffer = torch.cat((buffer_1, buffer_2), 1) - optical_flow_L1 = self.bottleneck_L1(buffer) - optical_flow_L1 = self.conv_L1_2(optical_flow_L1) - optical_flow_L1_upscaled = self.upsample(optical_flow_L1) # *2 - # x_L1_res = optical_flow_warp(torch.unsqueeze(x_L1[:, 0, :, :], dim=1), optical_flow_L1) - torch.unsqueeze(x_L1[:, 1, :, :], dim=1) - # Level 2 - x_L2 = optical_flow_warp(torch.unsqueeze(x[:, 0, :, :], dim=1), - optical_flow_L1_upscaled) - x_L2_res = torch.unsqueeze(x[:, 1, :, :], dim=1) - x_L2 - x_L2 = torch.cat((x, x_L2, x_L2_res, optical_flow_L1_upscaled), 1) - input_L2 = self.conv_L2_1(x_L2) - buffer_1 = self.RDB2_1(input_L2) - buffer_2 = self.RDB2_2(buffer_1) - buffer = torch.cat((buffer_1, buffer_2), 1) - optical_flow_L2 = self.bottleneck_L2(buffer) - optical_flow_L2 = self.conv_L2_2(optical_flow_L2) - optical_flow_L2 = optical_flow_L2 + optical_flow_L1_upscaled - # x_L2_res = optical_flow_warp(torch.unsqueeze(x_L2[:, 0, :, :], dim=1), optical_flow_L2) - torch.unsqueeze(x_L2[:, 1, :, :], dim=1) - # Level 3 - x_L3 = optical_flow_warp(torch.unsqueeze(x[:, 0, :, :], dim=1), - optical_flow_L2) - x_L3_res = torch.unsqueeze(x[:, 1, :, :], dim=1) - x_L3 - x_L3 = torch.cat((x, x_L3, x_L3_res, optical_flow_L2), 1) - input_L3 = self.conv_L3_1(x_L3) - buffer_1 = self.RDB3_1(input_L3) - buffer_2 = self.RDB3_2(buffer_1) - buffer = torch.cat((buffer_1, buffer_2), 1) - optical_flow_L3 = self.bottleneck_L3(buffer) - optical_flow_L3 = self.conv_L3_2(optical_flow_L3) - optical_flow_L3 = self.shuffle(optical_flow_L3) + self.final_upsample( - optical_flow_L2) # *4 - - return optical_flow_L3, optical_flow_L2, optical_flow_L1 - - -class SRnet(nn.Module): - def __init__(self, s, c, d): - """ - Args: - s: scale factor - c: channel numbers - d: video sequence number - """ - super(SRnet, self).__init__() - self.conv = nn.Conv2d(c * (2 * s ** 2 + d), 64, 3, 1, 1, bias=False) - self.RDB_1 = RDB(5, 64, 32) - self.RDB_2 = RDB(5, 64, 32) - self.RDB_3 = RDB(5, 64, 32) - self.RDB_4 = RDB(5, 64, 32) - self.RDB_5 = RDB(5, 64, 32) - self.bottleneck = nn.Conv2d(384, c * s ** 2, 1, 1, 0, bias=False) - self.conv_2 = nn.Conv2d(c * s ** 2, c * s ** 2, 3, 1, 1, bias=True) - self.shuffle = nn.PixelShuffle(upscale_factor=s) - - def forward(self, x): - input = self.conv(x) - buffer_1 = self.RDB_1(input) - buffer_2 = self.RDB_2(buffer_1) - buffer_3 = self.RDB_3(buffer_2) - buffer_4 = self.RDB_4(buffer_3) - buffer_5 = self.RDB_5(buffer_4) - output = torch.cat( - (buffer_1, buffer_2, buffer_3, buffer_4, buffer_5, input), 1) - output = self.bottleneck(output) - output = self.conv_2(output) - output = self.shuffle(output) - return output - - -class SOFVSR(nn.Module): - def __init__(self, scale, channel, depth): - super(SOFVSR, self).__init__() - self.upscale_factor = scale - self.c = channel - self.OFRnet = OFRnet(upscale_factor=scale) - self.SRnet = SRnet(scale, channel, depth) - - def forward(self, x): - input_01 = torch.cat((torch.unsqueeze(x[:, 0, :, :], dim=1), - torch.unsqueeze(x[:, 1, :, :], dim=1)), 1) - input_21 = torch.cat((torch.unsqueeze(x[:, 2, :, :], dim=1), - torch.unsqueeze(x[:, 1, :, :], dim=1)), 1) - flow_01_L3, flow_01_L2, flow_01_L1 = self.OFRnet(input_01) - flow_21_L3, flow_21_L2, flow_21_L1 = self.OFRnet(input_21) - draft_cube = x - for i in range(self.upscale_factor): - for j in range(self.upscale_factor): - draft_01 = optical_flow_warp(x[:, :self.c, :, :], - flow_01_L3[:, :, i::self.upscale_factor, - j::self.upscale_factor] / self.upscale_factor) - draft_21 = optical_flow_warp(x[:, self.c * 2:, :, :], - flow_21_L3[:, :, i::self.upscale_factor, - j::self.upscale_factor] / self.upscale_factor) - draft_cube = torch.cat((draft_cube, draft_01, draft_21), 1) - output = self.SRnet(draft_cube) - return output, (flow_01_L3, flow_01_L2, flow_01_L1), ( - flow_21_L3, flow_21_L2, flow_21_L1) diff --git a/VSR/Backend/Torch/Models/spmc/__init__.py b/VSR/Backend/Torch/Models/spmc/__init__.py deleted file mode 100644 index f5bc9db..0000000 --- a/VSR/Backend/Torch/Models/spmc/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/5/25 下午4:38 - -import logging - -_logger = logging.getLogger("VSR.SPMC") -_logger.info("LICENSE: SPMC is proposed by X. Tao, et. al. " - "Implemented via PyTorch by @LoSealL.") -_logger.info("LICENSE: ConvLSTM is implemented by @Kaixhin.") diff --git a/VSR/Backend/Torch/Models/spmc/ops.py b/VSR/Backend/Torch/Models/spmc/ops.py deleted file mode 100644 index b6d1895..0000000 --- a/VSR/Backend/Torch/Models/spmc/ops.py +++ /dev/null @@ -1,225 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/5/26 上午11:39 - -import math -import torch -from torch import nn -from torch.autograd import Variable -from torch.nn import Parameter -from torch.nn import functional as F -from torch.nn.modules.utils import _pair - -from ..Arch import EasyConv2d -from ..video.motion import STN -from ...Util.Utility import upsample - - -class Conv2dLSTMCell(nn.Module): - """ConvLSTM cell. - Copied from https://gist.github.com/Kaixhin/57901e91e5c5a8bac3eb0cbbdd3aba81 - Special thanks to @Kaixhin - """ - - def __init__(self, in_channels, out_channels, kernel_size, stride=1, - padding=0, dilation=1, groups=1, bias=True): - - super(Conv2dLSTMCell, self).__init__() - if in_channels % groups != 0: - raise ValueError('in_channels must be divisible by groups') - if out_channels % groups != 0: - raise ValueError('out_channels must be divisible by groups') - kernel_size = _pair(kernel_size) - stride = _pair(stride) - padding = _pair(padding) - dilation = _pair(dilation) - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.stride = stride - self.padding = padding - self.padding_h = tuple( - k // 2 for k, s, p, d in zip(kernel_size, stride, padding, dilation)) - self.dilation = dilation - self.groups = groups - self.weight_ih = Parameter( - torch.Tensor(4 * out_channels, in_channels // groups, *kernel_size)) - self.weight_hh = Parameter( - torch.Tensor(4 * out_channels, out_channels // groups, *kernel_size)) - self.weight_ch = Parameter( - torch.Tensor(3 * out_channels, out_channels // groups, *kernel_size)) - if bias: - self.bias_ih = Parameter(torch.Tensor(4 * out_channels)) - self.bias_hh = Parameter(torch.Tensor(4 * out_channels)) - self.bias_ch = Parameter(torch.Tensor(3 * out_channels)) - else: - self.register_parameter('bias_ih', None) - self.register_parameter('bias_hh', None) - self.register_parameter('bias_ch', None) - self.register_buffer('wc_blank', torch.zeros(out_channels)) - self.reset_parameters() - - def reset_parameters(self): - n = 4 * self.in_channels - for k in self.kernel_size: - n *= k - stdv = 1. / math.sqrt(n) - self.weight_ih.data.uniform_(-stdv, stdv) - self.weight_hh.data.uniform_(-stdv, stdv) - self.weight_ch.data.uniform_(-stdv, stdv) - if self.bias_ih is not None: - self.bias_ih.data.uniform_(-stdv, stdv) - self.bias_hh.data.uniform_(-stdv, stdv) - self.bias_ch.data.uniform_(-stdv, stdv) - - def forward(self, input, hx): - h_0, c_0 = hx - - wx = F.conv2d(input, self.weight_ih, self.bias_ih, self.stride, - self.padding, self.dilation, self.groups) - wh = F.conv2d(h_0, self.weight_hh, self.bias_hh, self.stride, - self.padding_h, self.dilation, self.groups) - # Cell uses a Hadamard product instead of a convolution? - wc = F.conv2d(c_0, self.weight_ch, self.bias_ch, self.stride, - self.padding_h, self.dilation, self.groups) - v = Variable(self.wc_blank).reshape((1, -1, 1, 1)) - wxhc = wx + wh + torch.cat((wc[:, :2 * self.out_channels], - v.expand(wc.size(0), wc.size(1) // 3, - wc.size(2), wc.size(3)), - wc[:, 2 * self.out_channels:]), 1) - - i = torch.sigmoid(wxhc[:, :self.out_channels]) - f = torch.sigmoid(wxhc[:, self.out_channels:2 * self.out_channels]) - g = torch.tanh(wxhc[:, 2 * self.out_channels:3 * self.out_channels]) - o = torch.sigmoid(wxhc[:, 3 * self.out_channels:]) - - c_1 = f * c_0 + i * g - h_1 = o * torch.tanh(c_1) - return h_1, (h_1, c_1) - - -class ZeroUpsample(nn.Module): - def __init__(self, scale_factor): - super(ZeroUpsample, self).__init__() - self.ps = nn.PixelShuffle(scale_factor) - self.scale = scale_factor - - def forward(self, x): - z = torch.zeros_like(x).repeat_interleave(self.scale ** 2 - 1, dim=1) - x = torch.cat((x, z), dim=1) - return self.ps(x) - - -class SPMC(nn.Module): - def __init__(self, scale): - super(SPMC, self).__init__() - self.zero_up = ZeroUpsample(scale) - self.warper = STN() - self.scale = scale - - def forward(self, x, u=0, v=0, flow=None): - if flow is not None: - u = flow[:, 0] - v = flow[:, 1] - x2 = self.zero_up(x) - u2 = self.zero_up(u.unsqueeze(1)) * self.scale - v2 = self.zero_up(v.unsqueeze(1)) * self.scale - return self.warper(x2, u2.squeeze(1), v2.squeeze(1)) - - -class MotionEstimation(nn.Module): - def __init__(self, channel, gain=32): - super(MotionEstimation, self).__init__() - self.gain = gain - in_c = channel * 2 - # Coarse Flow - conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) - conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv3 = nn.Sequential(nn.Conv2d(24, 24, 5, 2, 2), nn.ReLU(True)) - conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv5 = nn.Sequential(nn.Conv2d(24, 32, 3, 1, 1), nn.Tanh()) - up1 = nn.PixelShuffle(4) - self.coarse_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up1) - # Fine Flow - in_c = channel * 3 + 2 - conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) - conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv3 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv5 = nn.Sequential(nn.Conv2d(24, 8, 3, 1, 1), nn.Tanh()) - up2 = nn.PixelShuffle(2) - self.fine_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up2) - self.warper = STN(padding_mode='border') - - def forward(self, target, ref, to_tuple=None): - flow0 = self.coarse_flow(torch.cat((ref, target), dim=1)) - w0 = self.warper(ref, flow0[:, 0], flow0[:, 1]) - flow_res = self.fine_flow(torch.cat((ref, target, flow0, w0), dim=1)) - flow1 = (flow_res + flow0) * self.gain - if to_tuple: - return flow1[:, 0], flow1[:, 1] - return flow1 - - -class DetailFusion(nn.Module): - def __init__(self, channel, base_filter): - super(DetailFusion, self).__init__() - f = base_filter - self.enc1 = EasyConv2d(channel, f, 5, activation='relu') - self.enc2 = nn.Sequential( - EasyConv2d(f, f * 2, 3, 2, activation='relu'), - EasyConv2d(f * 2, f * 2, 3, activation='relu')) - self.enc3 = EasyConv2d(f * 2, f * 4, 3, 2, activation='relu') - self.lstm = Conv2dLSTMCell(f * 4, f * 4, 3, 1, 1) - self.dec1 = nn.Sequential( - EasyConv2d(f * 4, f * 4, 3, activation='relu'), - nn.ConvTranspose2d(f * 4, f * 2, 4, 2, 1), - nn.ReLU(True)) - self.dec2 = nn.Sequential( - EasyConv2d(f * 2, f * 2, 3, activation='relu'), - nn.ConvTranspose2d(f * 2, f, 4, 2, 1), - nn.ReLU(True)) - self.dec3 = nn.Sequential( - EasyConv2d(f, f, 3, activation='relu'), - EasyConv2d(f, channel, 5)) - - def forward(self, x, hx): - add1 = self.enc1(x) - add2 = self.enc2(add1) - h0 = self.enc3(add2) - x, hx = self.lstm(h0, hx) - x = self.dec1(x) - x = self.dec2(x + add2) - x = self.dec3(x + add1) - return x, hx - - -class DetailRevealer(nn.Module): - def __init__(self, scale, channel, **kwargs): - super(DetailRevealer, self).__init__() - self.base_filter = kwargs.get('base_filter', 32) - self.me = MotionEstimation(channel, gain=kwargs.get('gain', 32)) - self.spmc = SPMC(scale) - self.vsr = DetailFusion(channel, self.base_filter) - self.scale = scale - self.hidden_state = None - - def reset(self): - self.hidden_state = None - - def forward(self, target, ref): - flow = self.me(target, ref) - hr_ref = self.spmc(ref, flow=flow) - hr_target = upsample(target, self.scale) - if self.hidden_state is None: - batch, _, height, width = hr_ref.shape - hidden_shape = (batch, self.base_filter * 4, height // 4, width // 4) - hx = (torch.zeros(hidden_shape, device=ref.device), - torch.zeros(hidden_shape, device=ref.device)) - else: - hx = self.hidden_state - res, hx = self.vsr(hr_ref, hx) - sr = hr_target + res - self.hidden_state = hx - return sr, flow diff --git a/VSR/Backend/Torch/Models/srfeat/__init__.py b/VSR/Backend/Torch/Models/srfeat/__init__.py deleted file mode 100644 index cc297c5..0000000 --- a/VSR/Backend/Torch/Models/srfeat/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/27 下午11:06 - -import logging - -_logger = logging.getLogger("VSR.SRFEAT") -_logger.info("LICENSE: SRFeat is proposed by S. Park, et. al. " - "Implemented via PyTorch by @LoSealL.") diff --git a/VSR/Backend/Torch/Models/srfeat/ops.py b/VSR/Backend/Torch/Models/srfeat/ops.py deleted file mode 100644 index 1684389..0000000 --- a/VSR/Backend/Torch/Models/srfeat/ops.py +++ /dev/null @@ -1,35 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/27 下午11:06 - -import torch -import torch.nn as nn - -from ..Arch import RB, Upsample - - -class Generator(nn.Module): - """Generator for SRFeat: Single Image Super-Resolution with Feature Discrimination (ECCV 2018) - - """ - - def __init__(self, channel, scale, filters, num_rb): - super(Generator, self).__init__() - self.head = nn.Conv2d(channel, filters, 9, 1, 4) - for i in range(num_rb): - setattr(self, f'rb_{i:02d}', RB(filters, 3, 'lrelu', use_bn=True)) - setattr(self, f'merge_{i:02d}', nn.Conv2d(filters, filters, 1)) - self.tail = nn.Sequential( - Upsample(filters, scale), - nn.Conv2d(filters, channel, 3, 1, 1)) - self.num_rb = num_rb - - def forward(self, inputs): - x = self.head(inputs) - feat = [] - for i in range(self.num_rb): - x = getattr(self, f'rb_{i:02d}')(x) - feat.append(getattr(self, f'merge_{i:02d}')(x)) - x = self.tail(x + torch.stack(feat, dim=0).sum(0).squeeze(0)) - return x diff --git a/VSR/Backend/Torch/Models/srmd/__init__.py b/VSR/Backend/Torch/Models/srmd/__init__.py deleted file mode 100644 index cc3be81..0000000 --- a/VSR/Backend/Torch/Models/srmd/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) 2017-2020 Wenyi Tang. -# Author: Wenyi Tang -# Email: wenyitang@outlook.com -# Update: 2020 - 2 - 11 - -import logging - -logging.getLogger("VSR.SRFEAT").info( - "LICENSE: SRMD is proposed by Kai Zhang, et. al. " - "Implemented via PyTorch by @LoSealL.") diff --git a/VSR/Backend/Torch/Models/srmd/ops.py b/VSR/Backend/Torch/Models/srmd/ops.py deleted file mode 100644 index 81f5239..0000000 --- a/VSR/Backend/Torch/Models/srmd/ops.py +++ /dev/null @@ -1,37 +0,0 @@ -# Copyright (c) 2017-2020 Wenyi Tang. -# Author: Wenyi Tang -# Email: wenyitang@outlook.com -# Update: 2020 - 2 - 11 - -import torch -import torch.nn as nn - -from ..Arch import EasyConv2d - - -class Net(nn.Module): - """ - SRMD CNN network. 12 conv layers - """ - - def __init__(self, scale=4, channels=3, layers=12, filters=128, - pca_length=15): - super(Net, self).__init__() - self.pca_length = pca_length - net = [EasyConv2d(channels + pca_length + 1, filters, 3, activation='relu')] - net += [EasyConv2d(filters, filters, 3, activation='relu') for _ in - range(layers - 2)] - net += [EasyConv2d(filters, channels * scale ** 2, 3), - nn.PixelShuffle(scale)] - self.body = nn.Sequential(*net) - - def forward(self, x, kernel=None, noise=None): - if kernel is None and noise is None: - kernel = torch.zeros(x.shape[0], 15, 1, device=x.device, dtype=x.dtype) - noise = torch.zeros(x.shape[0], 1, 1, device=x.device, dtype=x.dtype) - # degradation parameter - degpar = torch.cat([kernel, noise.reshape([-1, 1, 1])], dim=1) - degpar = degpar.reshape([-1, 1 + self.pca_length, 1, 1]) - degpar = torch.ones_like(x)[:, 0:1] * degpar - _x = torch.cat([x, degpar], dim=1) - return self.body(_x) diff --git a/VSR/Backend/Torch/Models/teco/__init__.py b/VSR/Backend/Torch/Models/teco/__init__.py deleted file mode 100644 index 8d3aed0..0000000 --- a/VSR/Backend/Torch/Models/teco/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/27 下午2:37 - -import logging - -_logger = logging.getLogger("VSR.TecoGAN") -_logger.info("LICENSE: TecoGAN is implemented by Mengyu Chu, et. al. " - "@rachelchu https://github.com/rachelchu/TecoGAN") -_logger.warning("Training of TecoGAN hasn't been verified!!") diff --git a/VSR/Backend/Torch/Models/teco/ops.py b/VSR/Backend/Torch/Models/teco/ops.py deleted file mode 100644 index c15bf3b..0000000 --- a/VSR/Backend/Torch/Models/teco/ops.py +++ /dev/null @@ -1,64 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/27 下午2:37 - -import torch -from torch import nn - -from ..Arch import EasyConv2d, RB, Upsample - - -class TecoGenerator(nn.Module): - """Generator in TecoGAN. - - Note: the flow estimation net `Fnet` shares with FRVSR. - - Args: - filters: basic filter numbers [default: 64] - num_rb: number of residual blocks [default: 16] - """ - - def __init__(self, channel, scale, filters, num_rb): - super(TecoGenerator, self).__init__() - rbs = [] - for i in range(num_rb): - rbs.append(RB(filters, 3, 'relu')) - self.body = nn.Sequential( - EasyConv2d(channel * (1 + scale ** 2), filters, 3, activation='relu'), - *rbs, - Upsample(filters, scale, 'nearest', activation='relu'), - EasyConv2d(filters, channel, 3)) - - def forward(self, x, prev, residual=None): - """`residual` is the bicubically upsampled HR images""" - sr = self.body(torch.cat((x, prev), dim=1)) - if residual is not None: - sr += residual - return sr - - -class TecoDiscriminator(nn.Module): - def __init__(self, channel, filters, patch_size): - super(TecoDiscriminator, self).__init__() - f = filters - self.conv0 = EasyConv2d(channel * 6, f, 3, activation='leaky') - self.conv1 = EasyConv2d(f, f, 4, 2, activation='leaky', use_bn=True) - self.conv2 = EasyConv2d(f, f, 4, 2, activation='leaky', use_bn=True) - self.conv3 = EasyConv2d(f, f * 2, 4, 2, activation='leaky', use_bn=True) - self.conv4 = EasyConv2d(f * 2, f * 4, 4, 2, activation='leaky', use_bn=True) - # self.pool = nn.AdaptiveAvgPool2d(1) - self.linear = nn.Linear(f * 4 * (patch_size // 16) ** 2, 1) - - def forward(self, x): - """The inputs `x` is the concat of 8 tensors. - Note that we remove the duplicated gt/yt in paper (9 - 1 = 8). - """ - l0 = self.conv0(x) - l1 = self.conv1(l0) - l2 = self.conv2(l1) - l3 = self.conv3(l2) - l4 = self.conv4(l3) - # y = self.pool(l4) - y = self.linear(l4.flatten(1)) - return y, (l1, l2, l3, l4) diff --git a/VSR/Backend/Torch/Models/vespcn/__init__.py b/VSR/Backend/Torch/Models/vespcn/__init__.py deleted file mode 100644 index 4bddf34..0000000 --- a/VSR/Backend/Torch/Models/vespcn/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午5:10 - -import logging - -_logger = logging.getLogger("VSR.VESPCN") -_logger.info("LICENSE: VESPCN is proposed at CVPR2017 by Twitter. " - "Implemented by myself @LoSealL.") diff --git a/VSR/Backend/Torch/Models/vespcn/ops.py b/VSR/Backend/Torch/Models/vespcn/ops.py deleted file mode 100644 index 36a983b..0000000 --- a/VSR/Backend/Torch/Models/vespcn/ops.py +++ /dev/null @@ -1,106 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午5:10 - -import torch -from torch import nn -from torch.nn import functional as F -from ..video.motion import STN - - -class RB(nn.Module): - def __init__(self, inchannels, outchannels): - super(RB, self).__init__() - self.conv1 = nn.Conv2d(inchannels, 64, 3, 1, 1) - self.conv2 = nn.Conv2d(64, outchannels, 3, 1, 1) - if inchannels != outchannels: - self.sc = nn.Conv2d(inchannels, outchannels, 1) - - def forward(self, inputs): - x = F.relu(inputs) - x = self.conv1(x) - x = F.relu(x) - x = self.conv2(x) - if hasattr(self, 'sc'): - sc = self.sc(inputs) - else: - sc = inputs - return x + sc - - -class MotionCompensation(nn.Module): - def __init__(self, channel, gain=32): - super(MotionCompensation, self).__init__() - self.gain = gain - in_c = channel * 2 - # Coarse Flow - conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) - conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv3 = nn.Sequential(nn.Conv2d(24, 24, 5, 2, 2), nn.ReLU(True)) - conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv5 = nn.Sequential(nn.Conv2d(24, 32, 3, 1, 1), nn.Tanh()) - up1 = nn.PixelShuffle(4) - self.coarse_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up1) - # Fine Flow - in_c = channel * 3 + 2 - conv1 = nn.Sequential(nn.Conv2d(in_c, 24, 5, 2, 2), nn.ReLU(True)) - conv2 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv3 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv4 = nn.Sequential(nn.Conv2d(24, 24, 3, 1, 1), nn.ReLU(True)) - conv5 = nn.Sequential(nn.Conv2d(24, 8, 3, 1, 1), nn.Tanh()) - up2 = nn.PixelShuffle(2) - self.fine_flow = nn.Sequential(conv1, conv2, conv3, conv4, conv5, up2) - self.warp1 = STN(padding_mode='border') - self.warp2 = STN(padding_mode='border') - - def forward(self, target, ref): - flow0 = self.coarse_flow(torch.cat([ref, target], 1)) - flow0 *= self.gain - w0 = self.warp1(ref, flow0[:, 0], flow0[:, 1]) - flow1 = self.fine_flow(torch.cat([ref, target, flow0, w0], 1)) - flow1 *= self.gain - flow1 += flow0 - w1 = self.warp2(ref, flow1[:, 0], flow1[:, 1]) - return w1, flow1 - - -class SRNet(nn.Module): - def __init__(self, scale, channel, depth): - super(SRNet, self).__init__() - self.entry = nn.Conv2d(channel * depth, 64, 3, 1, 1) - self.exit = nn.Conv2d(64, channel, 3, 1, 1) - self.body = nn.Sequential(RB(64, 64), RB(64, 64), RB(64, 64), nn.ReLU(True)) - self.conv = nn.Conv2d(64, 64 * scale ** 2, 3, 1, 1) - self.up = nn.PixelShuffle(scale) - - def forward(self, inputs): - x = self.entry(inputs) - y = self.body(x) + x - y = self.conv(y) - y = self.up(y) - y = self.exit(y) - return y - - -class VESPCN(nn.Module): - def __init__(self, scale, channel, depth): - super(VESPCN, self).__init__() - self.sr = SRNet(scale, channel, depth) - self.mc = MotionCompensation(channel) - self.depth = depth - - def forward(self, *inputs): - center = self.depth // 2 - target = inputs[center] - refs = inputs[:center] + inputs[center + 1:] - warps = [] - flows = [] - for r in refs: - warp, flow = self.mc(target, r) - warps.append(warp) - flows.append(flow) - warps.append(target) - x = torch.cat(warps, 1) - sr = self.sr(x) - return sr, warps[:-1], flows diff --git a/VSR/Backend/Torch/Models/video/__init__.py b/VSR/Backend/Torch/Models/video/__init__.py deleted file mode 100644 index 7d064ec..0000000 --- a/VSR/Backend/Torch/Models/video/__init__.py +++ /dev/null @@ -1,8 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午5:10 - -import logging - -_logger = logging.getLogger("VSR.VIDEO") diff --git a/VSR/Backend/Torch/Models/video/motion.py b/VSR/Backend/Torch/Models/video/motion.py deleted file mode 100644 index d9e1478..0000000 --- a/VSR/Backend/Torch/Models/video/motion.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright (c): Wenyi Tang 2017-2019. -# Author: Wenyi Tang -# Email: wenyi.tang@intel.com -# Update Date: 2019/4/3 下午5:10 - -import torch -from torch import nn -from torch.nn import functional as F - -from VSR.Util.Math import nd_meshgrid -from ...Util.Utility import irtranspose, transpose - - -class STN(nn.Module): - """Spatial transformer network. - For optical flow based frame warping. - - Args: - mode: sampling interpolation mode of `grid_sample` - padding_mode: can be `zeros` | `borders` - normalized: flow value is normalized to [-1, 1] or absolute value - """ - - def __init__(self, mode='bilinear', padding_mode='zeros', normalize=False): - super(STN, self).__init__() - self.mode = mode - self.padding_mode = padding_mode - self.norm = normalize - - def forward(self, inputs, u, v): - batch = inputs.size(0) - device = inputs.device - mesh = nd_meshgrid(*inputs.shape[-2:], permute=[1, 0]) - mesh = torch.tensor(mesh, dtype=torch.float32, device=device) - mesh = mesh.unsqueeze(0).repeat_interleave(batch, dim=0) - # add flow to mesh - _u, _v = u, v - if not self.norm: - # flow needs to normalize to [-1, 1] - h, w = inputs.shape[-2:] - _u = u / w * 2 - _v = v / h * 2 - flow = torch.stack([_u, _v], dim=-1) - assert flow.shape == mesh.shape, \ - f"Shape mis-match: {flow.shape} != {mesh.shape}" - mesh = mesh + flow - return F.grid_sample(inputs, mesh, - mode=self.mode, padding_mode=self.padding_mode) - - -class STTN(nn.Module): - """Spatio-temporal transformer network. (ECCV 2018) - - Args: - transpose_ncthw: how input tensor be transposed to format NCTHW - mode: sampling interpolation mode of `grid_sample` - padding_mode: can be `zeros` | `borders` - normalize: flow value is normalized to [-1, 1] or absolute value - """ - - def __init__(self, transpose_ncthw=(0, 1, 2, 3, 4), - normalize=False, mode='bilinear', padding_mode='zeros'): - super(STTN, self).__init__() - self.normalized = normalize - self.mode = mode - self.padding_mode = padding_mode - self.t = transpose_ncthw - - def forward(self, inputs, d, u, v): - _error_msg = "STTN only works for 5D tensor but got {}D input!" - if inputs.dim() != 5: - raise ValueError(_error_msg.format(inputs.dim())) - device = inputs.device - batch, channel, t, h, w = (inputs.shape[i] for i in self.t) - mesh = nd_meshgrid(t, h, w, permute=[2, 1, 0]) - mesh = torch.tensor(mesh, dtype=torch.float32, device=device) - mesh = mesh.unsqueeze(0).repeat_interleave(batch, dim=0) - _d, _u, _v = d, u, v - if not self.normalized: - _d = d / t * 2 - _u = u / w * 2 - _v = v / h * 2 - st_flow = torch.stack([_u, _v, _d], dim=-1) - st_flow = st_flow.unsqueeze(1).repeat_interleave(t, dim=1) - assert st_flow.shape == mesh.shape, \ - f"Shape mis-match: {st_flow.shape} != {mesh.shape}" - mesh = mesh + st_flow - inputs = transpose(inputs, self.t) - warp = F.grid_sample(inputs, mesh, mode=self.mode, - padding_mode=self.padding_mode) - # STTN warps into a single frame - warp = warp[:, :, 0:1] - return irtranspose(warp, self.t) diff --git a/VSR/Backend/Torch/Util/Utility.py b/VSR/Backend/Torch/Util/Utility.py index fd5cf3f..96cfb3e 100644 --- a/VSR/Backend/Torch/Util/Utility.py +++ b/VSR/Backend/Torch/Util/Utility.py @@ -6,6 +6,7 @@ import torch import torch.nn.functional as F +from VSR.Backend import DATA_FORMAT from VSR.Util.Math import weights_downsample, weights_upsample @@ -161,11 +162,13 @@ def bicubic_resize(img, scale, border='reflect'): raise ValueError("Wrong scale factor!") -def imfilter(image: torch.Tensor, kernel: torch.Tensor): +def imfilter(image: torch.Tensor, kernel: torch.Tensor, padding=None): with torch.no_grad(): if image.dim() == 3: image = image.unsqueeze(0) assert image.dim() == 4, f"Dim of image must be 4, but is {image.dim()}" + if kernel.dtype != image.dtype: + kernel = kernel.to(dtype=image.dtype) if kernel.dim() == 2: kernel = kernel.unsqueeze(0) kernel = torch.cat([kernel] * image.shape[0]) @@ -182,28 +185,42 @@ def imfilter(image: torch.Tensor, kernel: torch.Tensor): t[j] = _k _m.append(torch.cat(t, dim=1)) _k = torch.cat(_m, dim=0) - ret.append(F.conv2d(i, _k, padding=[x // 2 for x in kernel.shape[1:]])) + if padding is None: + ret.append(F.conv2d(i, _k, padding=[x // 2 for x in kernel.shape[1:]])) + elif callable(padding): + ret.append(F.conv2d(padding(i), _k)) + else: + raise ValueError("Wrong padding value!") return torch.cat(ret) -def poisson_noise(inputs, stddev=None, sigma_max=0.16): +def poisson_noise(inputs: torch.Tensor, stddev=None, sigma_max=0.16, + channel_wise=1): """Add poisson noise to inputs.""" if stddev is None: - stddev = np.random.rand(inputs.shape[-1]) * sigma_max - stddev = np.reshape(stddev, [1] * (inputs.ndim - 1) + [-1]) + stddev = torch.rand(channel_wise) * sigma_max + stddev = torch.tensor(stddev, device=inputs.device) + if DATA_FORMAT == 'channels_first': + stddev = stddev.reshape([1, -1] + [1] * (inputs.ndim - 2)) + else: + stddev = stddev.reshape([1] * (inputs.ndim - 1) + [-1]) sigma_map = (1 - inputs) * stddev - return np.random.randn(*inputs.shape) * sigma_map + return torch.randn_like(inputs) * sigma_map -def gaussian_noise(inputs, stddev=None, sigma_max=0.06, channel_wise=True): +def gaussian_noise(inputs: torch.Tensor, stddev=None, sigma_max=0.06, + channel_wise=1): """Add channel wise gaussian noise.""" - channel = inputs.shape[-1] if channel_wise else 1 if stddev is None: - stddev = np.random.rand(channel) * sigma_max - stddev = np.reshape(stddev, [1] * (inputs.ndim - 1) + [-1]) - noise_map = np.random.randn(*inputs.shape) * stddev + stddev = torch.rand(channel_wise) * sigma_max + stddev = torch.tensor(stddev, device=inputs.device) + if DATA_FORMAT == 'channels_first': + stddev = stddev.reshape([1, -1] + [1] * (inputs.ndim - 2)) + else: + stddev = stddev.reshape([1] * (inputs.ndim - 1) + [-1]) + noise_map = torch.randn_like(inputs) * stddev return noise_map diff --git a/VSR/Backend/Torch/__init__.py b/VSR/Backend/Torch/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/VSR/Backend/__init__.py b/VSR/Backend/__init__.py index efbfc46..1cfab7a 100644 --- a/VSR/Backend/__init__.py +++ b/VSR/Backend/__init__.py @@ -36,17 +36,23 @@ BACKEND = CONFIG['backend'].lower() if BACKEND == 'auto': BACKEND = 'tensorflow' -if BACKEND not in ('tensorflow', 'tensorflow2', 'pytorch'): +if BACKEND not in ('tensorflow', 'keras', 'pytorch'): BACKEND = 'pytorch' -if BACKEND in ('tensorflow', 'tensorflow2'): +if BACKEND in ('tensorflow', 'keras'): try: tf = import_module('tensorflow') CONFIG['data_format'] = 'channels_last' - if BACKEND == 'tensorflow2' and tf.__version__.split('.')[0] != '2': + tf_ver_major, tf_ver_minor, _ = [int(s) for s in tf.__version__.split('.')] + if BACKEND == 'keras' and tf_ver_major < 2: LOG.warning(f"[!] Current tensorflow version is {tf.__version__}") - LOG.info("[*] Fallback to use tensorflow") + LOG.info("[*] Fallback to use legacy tensorflow v1.x") BACKEND = 'tensorflow' + if tf_ver_major == 1 and tf_ver_minor < 15: + LOG.warning("[!!] VSR does not support TF < 1.15.0 any longer.") + LOG.warning("[!] Considering use an old version of VSR, " + "or update your tensorflow version.") + raise ImportError except ImportError: LOG.warning("[!] Tensorflow package not found in your system.") LOG.info("[*] Fallback to use PyTorch...") diff --git a/VSR/DataLoader/Crop.py b/VSR/DataLoader/Crop.py index 8be9716..26f3f3a 100644 --- a/VSR/DataLoader/Crop.py +++ b/VSR/DataLoader/Crop.py @@ -28,7 +28,8 @@ class RandomCrop(Cropper): def call(self, img: tuple, shape: (list, tuple)) -> tuple: hr, lr = img if lr.shape[-2] < shape[-2]: - raise ValueError("Batch shape is too large than data") + raise ValueError( + f"Batch shape is larger than data: {lr.shape} vs {shape}") ind = [np.random.randint(nd + 1) for nd in lr.shape - np.array(shape)] slc1 = [slice(n, n + s) for n, s in zip(ind, shape)] slc2 = slc1.copy() diff --git a/VSR/DataLoader/Loader.py b/VSR/DataLoader/Loader.py index 1efeceb..7d793c7 100644 --- a/VSR/DataLoader/Loader.py +++ b/VSR/DataLoader/Loader.py @@ -17,7 +17,7 @@ from ..Util import Utility from ..Util.ImageProcess import img_to_array -FREE_MEMORY = virtual_memory().available * 0.5 +FREE_MEMORY = virtual_memory().available LOG = logging.getLogger('VSR.Loader') @@ -50,6 +50,7 @@ class EpochIterator: shape: The shape of the generated batch, 5-D requested [N, T, C, H, W]. steps: The number of batches to generate in one epoch. shuffle: A boolean representing whether to shuffle the dataset. + caching: Cache the transform and color converted image. Note: The rules for -1 shape: @@ -64,11 +65,12 @@ class EpochIterator: - If the `steps` is -1, will generate batches in sequential order; """ - def __init__(self, loader, shape, steps, shuffle=None): + def __init__(self, loader, shape, steps, shuffle=None, caching=False): self.loader = loader self.shape = shape self.depth = shape[1] self.count = 0 + self.cache = caching t = len(self.loader.data['hr']) frame_nums = [len(i) for i in self.loader.data['hr']] temporal_padding = not shuffle @@ -78,7 +80,7 @@ def __init__(self, loader, shape, steps, shuffle=None): idx_ = [(i, np.array([j + x for x in range(depth)])) for j in range(-(depth // 2), frame_nums[i] - (depth // 2))] d2_ = depth // 2 - self.index += idx_ if temporal_padding or d2_ == 0 else idx_[d2_ : -d2_] + self.index += idx_ if temporal_padding or d2_ == 0 else idx_[d2_: -d2_] self.steps = steps if steps >= 0 else len(self.index) // shape[0] while len(self.index) < self.steps * shape[0] and self.index: self.index += self.index @@ -110,13 +112,23 @@ def __next__(self): d[d >= len(hr)] = len(hr) - 1 name = self.loader.data['names'][i] hr2 = np.asarray(hr, dtype=object)[d] - for fn in cb_hr[0]: - hr2 = [fn(img) for img in hr2] - hr2 = [img.convert(self.loader.hr['color']) for img in hr2] + if not self.loader.cache_map.get(f'hr-{name}-{i}-{d}'): + for fn in cb_hr[0]: + hr2 = [fn(img) for img in hr2] + hr2 = [img.convert(self.loader.hr['color']) for img in hr2] + if self.cache: + self.loader.data['hr'][i] = hr2 + self.loader.cache_map[f'hr-{name}-{i}-{d}'] = True + LOG.debug(f"Caching hr-{name}-{i}-{d}...") lr2 = np.asarray(lr, dtype=object)[d] - for fn in cb_lr[0]: - lr2 = [fn(img) for img in lr2] - lr2 = [img.convert(self.loader.lr['color']) for img in lr2] + if not self.loader.cache_map.get(f'lr-{name}-{i}-{d}'): + for fn in cb_lr[0]: + lr2 = [fn(img) for img in lr2] + lr2 = [img.convert(self.loader.lr['color']) for img in lr2] + if self.cache: + self.loader.data['lr'][i] = lr2 + self.loader.cache_map[f'lr-{name}-{i}-{d}'] = True + LOG.debug(f"Caching lr-{name}-{i}-{d}...") hr3 = np.stack([img_to_array(img, DATA_FORMAT) for img in hr2]) lr3 = np.stack([img_to_array(img, DATA_FORMAT) for img in lr2]) del hr2, lr2 @@ -187,7 +199,7 @@ def __init__(self, hr_data, lr_data=None, scale=None, extra_data: dict = None, assert isinstance(lr_data, Container) if lr_data is not None and hr_data is not None: assert len(hr_data) == len(lr_data), \ - f"Length of HR and LR data mis-match: {len(lr_data)} != {len(lr_data)}" + f"Length of HR and LR data mis-match: {len(hr_data)} != {len(lr_data)}" else: hr_data = hr_data or lr_data lr_data = lr_data or hr_data @@ -227,6 +239,7 @@ def __init__(self, hr_data, lr_data=None, scale=None, extra_data: dict = None, 'names': [], 'extra': [] } + self.cache_map = {} self.extra = extra_data or {} self.crop = None self.threads = threads @@ -292,7 +305,7 @@ def set_color_space(self, target: str, mode: str): getattr(self, target.lower()).update(color=mode) def make_one_shot_iterator(self, batch_shape, steps, shuffle=None, - memory_limit=None): + memory_limit=None, caching=False): """Make an iterator object to generate batch data for models. Args: @@ -300,6 +313,7 @@ def make_one_shot_iterator(self, batch_shape, steps, shuffle=None, steps: The number of batches to generate in one epoch. shuffle: A boolean representing whether to shuffle the dataset. memory_limit: the maximum system memory to use. (Not GPU memory!!) + caching: cache the tranformed images (tranform1 and color conversion) Note: The rules for -1 shape: @@ -339,7 +353,7 @@ def make_one_shot_iterator(self, batch_shape, steps, shuffle=None, if loaded >= self.aux['cap'] / memory_limit: loaded = 0 self.loaded = loaded << (self.threads * 2) - return EpochIterator(self, shape, steps, shuffle) + return EpochIterator(self, shape, steps, shuffle, caching) def prefetch(self, shuffle=None, memory_usage=None): # check memory usage diff --git a/VSR/Model/__init__.py b/VSR/Model/__init__.py index f713cd4..610b3b7 100644 --- a/VSR/Model/__init__.py +++ b/VSR/Model/__init__.py @@ -20,8 +20,8 @@ def get_model(name: str): return import_module('.Models', 'VSR.Backend.Torch').get_model(name) elif BACKEND == 'tensorflow': return import_module('.Models', 'VSR.Backend.TF').get_model(name) - elif BACKEND == 'tensorflow2': - pass + elif BACKEND == 'keras': + return import_module('.Models', 'VSR.Backend.Keras').get_model(name) except (KeyError, ImportError): raise ImportError(f"Using {BACKEND}, can't find model {name}.") @@ -31,5 +31,5 @@ def list_supported_models(): return import_module('.Models', 'VSR.Backend.Torch').list_supported_models() elif BACKEND == 'tensorflow': return import_module('.Models', 'VSR.Backend.TF').list_supported_models() - elif BACKEND == 'tensorflow2': - pass + elif BACKEND == 'keras': + return import_module('.Models', 'VSR.Backend.Keras').list_supported_models() diff --git a/VSR/Util/Ensemble.py b/VSR/Util/Ensemble.py new file mode 100644 index 0000000..11fb80f --- /dev/null +++ b/VSR/Util/Ensemble.py @@ -0,0 +1,38 @@ +# Copyright (c) 2017-2020 Wenyi Tang. +# Author: Wenyi Tang +# Email: wenyitang@outlook.com +# Update: 2020 - 6 - 17 + +import numpy as np + + +class Ensembler: + @staticmethod + def expand(feature: np.ndarray): + r0 = feature.copy() + r1 = np.rot90(feature, 1, axes=[-3, -2]) + r2 = np.rot90(feature, 2, axes=[-3, -2]) + r3 = np.rot90(feature, 3, axes=[-3, -2]) + r4 = np.flip(feature, axis=-2) + r5 = np.rot90(r4, 1, axes=[-3, -2]) + r6 = np.rot90(r4, 2, axes=[-3, -2]) + r7 = np.rot90(r4, 3, axes=[-3, -2]) + return r0, r1, r2, r3, r4, r5, r6, r7 + + @staticmethod + def merge(outputs: [np.ndarray]): + results = [] + for i in outputs: + outputs_ensemble = [ + i[0], + np.rot90(i[1], 3, axes=[-3, -2]), + np.rot90(i[2], 2, axes=[-3, -2]), + np.rot90(i[3], 1, axes=[-3, -2]), + np.flip(i[4], axis=-2), + np.flip(np.rot90(i[5], 3, axes=[-3, -2]), axis=-2), + np.flip(np.rot90(i[6], 2, axes=[-3, -2]), axis=-2), + np.flip(np.rot90(i[7], 1, axes=[-3, -2]), axis=-2), + ] + results.append( + np.concatenate(outputs_ensemble).mean(axis=0, keepdims=True)) + return results diff --git a/VSR/Util/Math.py b/VSR/Util/Math.py index 54e42db..741e0cb 100644 --- a/VSR/Util/Math.py +++ b/VSR/Util/Math.py @@ -157,3 +157,16 @@ def camera_response_function(inputs, crf_table, max_val=1): for i in inputs_index.flatten(): ret.append(crf_table[i]) return np.reshape(ret, inputs.shape) + + +def gen_pca_mat(dim=15, kernel_size=15, samples=10000): + kernels = [] + for i in range(samples): + theta = np.random.uniform(0, np.pi) + l1 = np.random.uniform(0.1, 10) + l2 = np.random.uniform(0.1, l1) + kernels.append(anisotropic_gaussian_kernel(kernel_size, theta, l1, l2)) + kernels = np.stack(kernels).reshape([samples, -1]).transpose() + mat_c = np.matmul(kernels, kernels.transpose()) + _, mat_v = np.linalg.eigh(mat_c, 'U') + return mat_v[..., -dim:].transpose() diff --git a/VSR/Backend/Torch/Models/srmd/pca.py b/VSR/Util/PcaPrecompute.py similarity index 99% rename from VSR/Backend/Torch/Models/srmd/pca.py rename to VSR/Util/PcaPrecompute.py index 6e9f4d9..16a0d2d 100644 --- a/VSR/Backend/Torch/Models/srmd/pca.py +++ b/VSR/Util/PcaPrecompute.py @@ -1,11 +1,10 @@ # Copyright (c) 2017-2020 Wenyi Tang. # Author: Wenyi Tang # Email: wenyitang@outlook.com -# Update: 2020 - 2 - 12 +# Update: 2020 - 6 - 15 -import numpy as np -from VSR.Util.Math import anisotropic_gaussian_kernel +import numpy as np # Pre-calculated PCA array _PCA = np.array( @@ -3387,18 +3386,6 @@ dtype=np.float ) -def gen_pca_mat(dim=15,kernel_size=15, samples=10000): - kernels = [] - for i in range(samples): - theta = np.random.uniform(0, np.pi) - l1 = np.random.uniform(0.1, 10) - l2 = np.random.uniform(0.1, l1) - kernels.append(anisotropic_gaussian_kernel(kernel_size, theta, l1, l2)) - kernels = np.stack(kernels).reshape([samples, -1]).transpose() - mat_c = np.matmul(kernels, kernels.transpose()) - _, mat_v = np.linalg.eigh(mat_c, 'U') - return mat_v[..., -dim:].transpose() - def get_degradation(kernel: np.ndarray): ret = np.matmul(_PCA, kernel.reshape([-1, 1])) diff --git a/prepare_data.py b/prepare_data.py index f5d7b7c..6129067 100644 --- a/prepare_data.py +++ b/prepare_data.py @@ -28,7 +28,7 @@ exit(-1) _DEFAULT_DATASET_PATH = '/mnt/data/datasets' -_DEFAULT_DOWNLOAD_DIR = '/tmp/downloads' +_DEFAULT_DOWNLOAD_DIR = '.vsr/downloads' _DEFAULT_WEIGHTS_DIR = './Results' # Contact me if any of these links un-accessed DATASETS = { @@ -42,62 +42,52 @@ 'SET14.zip': 'https://uofi.box.com/shared/static/igsnfieh4lz68l926l8xbklwsnnk8we9.zip', 'SunHay80.zip': 'https://uofi.box.com/shared/static/rirohj4773jl7ef752r330rtqw23djt8.zip', 'Urban100.zip': 'https://uofi.box.com/shared/static/65upg43jjd0a4cwsiqgl6o6ixube6klm.zip', - # 'VID4.zip': 'https://people.csail.mit.edu/celiu/CVPR2011/videoSR.zip', 'BSD300.tgz': 'https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/BSDS300-images.tgz', 'BSD500.tgz': 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz', '91image.rar': 'http://www.ifp.illinois.edu/~jyang29/codes/ScSR.rar', 'waterloo.rar': 'http://ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar', + # Google Drive File ID. + # If you can't download from this file, visit url https://drive.google.com/open?id= + # paste the file id into position . 'GOPRO_Large.zip': '1H0PIXvJH4c40pk7ou6nAwoxuR4Qh_Sa2', 'MCL-V.rar': '1z41hdqR-bqNLcUWllPePzkfQW-I_A9ny', 'vid4.zip': '1ogEdifL_krqJnFAHfGNqOSMuUg_Ud6fb', } WEIGHTS = { - 'srcnn.tar.gz': 'https://github.com/LoSealL/Model/releases/download/srcnn/srcnn.tar.gz', - 'espcn.tar.gz': 'https://github.com/LoSealL/Model/releases/download/espcn/espcn.tar.gz', - 'edsr.zip': 'https://github.com/LoSealL/Model/releases/download/edsr/edsr.zip', - 'dncnn.zip': 'https://github.com/LoSealL/Model/releases/download/DnCNN/dncnn.zip', - 'carn.zip': 'https://github.com/LoSealL/Model/releases/download/carn/carn.zip', - # Google Drive File ID. - # If you can't download from this file, visit url https://drive.google.com/open?id= - # paste the file id into position . - 'srdensenet.zip': '1aXAfRqZieY6mTfZUnErG84-9NfkQSeDw', - 'vdsr.zip': '1hW5YDxXpmjO2IfAy8f29O7yf1M3fPIg1', - 'msrn.zip': '1A0LoY3oB_VnArP3GzI1ILUNJbLAEjdtJ', - 'vespcn.zip': '19u4YpsyThxW5dv4fhpMj7c5gZeEDKthm', - 'dbpn.zip': '1ymtlOjhkGmad-od0zw7yTf17nWD4KMVi', - 'idn.zip': '1Fh3rtvrKKLAK27r518T1M_JET_LWZAFQ', - 'drsr_v2.zip': '1UrVNE6QMcQTW9Ks4P__JrRClb4IGTMYp', - 'drsr_sc2.zip': '1xIRVG7jbTM9fcLQkwyGyJIjwF2rTbNEJ', - 'drsr_sc4.zip': '1W-222rR2D2o-E99B4cXuUPBz2aCLuY_Z', - # GAN weights - 'gangp.zip': '1UHiSLjaU5Yeiltl9cQsR3-EKta3yt0dI', - 'lsgan.zip': '15dsubMpvTeCoSCIfPCcKjhnk7UMyuljt', - 'ragan.zip': '1HWR2m3cFH-Fze1zkioj20ugDXRmjGQEH', - 'ragangp.zip': '1lf3Rj3Lk1qISbQiIQiSJt03DVV5pp5Ml', - 'ralsgan.zip': '180qrnH8_MdFvLlSl5MSP8sQCPLbbevsr', - 'rgan.zip': '1ZwCB1Fa9UIybOq1SfgOeBKJ8g63KMYEK', - 'rgangp.zip': '1QSBVscdfJvf_dMRRiBA_lCq39gX9mDZJ', - 'rlsgan.zip': '1siDKxGvlb0p2E2_EmAJoT8knFMuQRivj', - 'sgan.zip': '1spClB26QJNQEio_DktobQq9ALT-PHfg3', - 'wgangp.zip': '1jyngiCyU1Js4DH5yUhug4gTPy2bQoETO', - # PyTorch weights (Prefix "T") - 'Tsrcnn.zip': 'https://github.com/LoSealL/Model/releases/download/srcnn/Tsrcnn.zip', - 'Tespcn.zip': 'https://github.com/LoSealL/Model/releases/download/espcn/Tespcn.zip', - 'Tvdsr.zip': 'https://github.com/LoSealL/Model/releases/download/vdsr/Tvdsr.zip', - 'Tdrcn.zip': 'https://github.com/LoSealL/Model/releases/download/drcn/Tdrcn.zip', - 'Tdrrn.zip': 'https://github.com/LoSealL/Model/releases/download/drrn/Tdrrn.zip', - 'Tsofvsr.zip': 'https://github.com/LoSealL/Model/releases/download/sofvsr/SOFVSR_x4.zip', - 'Tcarn.zip': 'https://github.com/LoSealL/Model/releases/download/carn/tcarn.zip', - 'Tesrgan.zip': 'https://github.com/LoSealL/Model/releases/download/esrgan/esrgan.zip', - 'Ttecogan.zip': 'https://github.com/LoSealL/Model/releases/download/tecogan/tecogan.zip', - 'Tfrvsr.zip': 'https://github.com/LoSealL/Model/releases/download/frvsr/FRVSR.zip', - 'Tmldn.zip': 'https://github.com/LoSealL/Model/releases/download/mldn/drn.zip', - 'Tcrdn.zip': 'https://github.com/LoSealL/Model/releases/download/crdn/rsr.zip', - 'Trbpn.zip': '1Ozp5j-DBWJSpXY5GvxiEPKdfCaAbOXqu', - 'Tspmc.zip': 'https://github.com/LoSealL/Model/releases/download/spmc/spmc.zip', - 'Tvespcn.zip': 'https://github.com/LoSealL/Model/releases/download/vespcn/Tvespcn.zip', - 'Tsrmd.zip': '1ORKH05-aLSbQaWB4qQulIm2INoRufuD_', - 'Tdbpn.zip': '1PbhtuMz1zF3-d16dthurJ0xIQ9uyMvkz' + 'tensorflow': { + 'srcnn.tar.gz': 'https://github.com/LoSealL/Model/releases/download/srcnn/srcnn.tar.gz', + 'edsr.zip': 'https://github.com/LoSealL/Model/releases/download/edsr/edsr.zip', + 'dncnn.zip': 'https://github.com/LoSealL/Model/releases/download/DnCNN/dncnn.zip', + 'carn.zip': 'https://github.com/LoSealL/Model/releases/download/carn/carn.zip', + 'srdensenet.zip': '1aXAfRqZieY6mTfZUnErG84-9NfkQSeDw', + 'vdsr.zip': '1hW5YDxXpmjO2IfAy8f29O7yf1M3fPIg1', + 'msrn.zip': '1A0LoY3oB_VnArP3GzI1ILUNJbLAEjdtJ', + 'vespcn.zip': '19u4YpsyThxW5dv4fhpMj7c5gZeEDKthm', + 'dbpn.zip': '1ymtlOjhkGmad-od0zw7yTf17nWD4KMVi', + 'idn.zip': '1Fh3rtvrKKLAK27r518T1M_JET_LWZAFQ', + 'drsr_v2.zip': '1UrVNE6QMcQTW9Ks4P__JrRClb4IGTMYp', + 'drsr_sc2.zip': '1xIRVG7jbTM9fcLQkwyGyJIjwF2rTbNEJ', + 'drsr_sc4.zip': '1W-222rR2D2o-E99B4cXuUPBz2aCLuY_Z', + }, + 'pytorch': { + 'srcnn.zip': 'https://github.com/LoSealL/Model/releases/download/srcnn/Tsrcnn.zip', + 'espcn.zip': 'https://github.com/LoSealL/Model/releases/download/espcn/Tespcn.zip', + 'vdsr.zip': 'https://github.com/LoSealL/Model/releases/download/vdsr/Tvdsr.zip', + 'drcn.zip': 'https://github.com/LoSealL/Model/releases/download/drcn/Tdrcn.zip', + 'drrn.zip': 'https://github.com/LoSealL/Model/releases/download/drrn/Tdrrn.zip', + 'sofvsr.zip': 'https://github.com/LoSealL/Model/releases/download/sofvsr/SOFVSR_x4.zip', + 'carn.zip': 'https://github.com/LoSealL/Model/releases/download/carn/tcarn.zip', + 'edsr.pt': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x4-6b446fab.pt', + 'esrgan.zip': 'https://github.com/LoSealL/Model/releases/download/esrgan/esrgan.zip', + 'frvsr.zip': 'https://github.com/LoSealL/Model/releases/download/frvsr/FRVSR.zip', + 'mldn.zip': 'https://github.com/LoSealL/Model/releases/download/mldn/drn.zip', + 'crdn.zip': 'https://github.com/LoSealL/Model/releases/download/crdn/rsr.zip', + 'spmc.zip': 'https://github.com/LoSealL/Model/releases/download/spmc/spmc.zip', + 'rcan.zip': '10bEK-NxVtOS9-XSeyOZyaRmxUTX3iIRa', + 'rbpn.zip': '1Ozp5j-DBWJSpXY5GvxiEPKdfCaAbOXqu', + 'srmd.zip': '1ORKH05-aLSbQaWB4qQulIm2INoRufuD_', + 'dbpn.zip': '1PbhtuMz1zF3-d16dthurJ0xIQ9uyMvkz' + } } @@ -120,12 +110,10 @@ def matches(str1, pattern): def user_input(name, defaults=False, pattern=None): - _name = name - for _pat in pattern: - _name = matches(name, _pat) - if _name is not None: - break - if not _name: + if pattern.find('.*') < 0 and pattern.find('*') >= 0: + pattern = pattern.replace('*', '.*') + _name = matches(name, pattern) + if _name is None: return question = 'Do you wish to download {}? '.format(_name) if defaults: @@ -168,6 +156,7 @@ def drive_download(name, url, path): def main(): parser = argparse.ArgumentParser() + parser.add_argument("filter", help="an re pattern to filter candidates.") parser.add_argument("--download_dir", type=str, default=_DEFAULT_DOWNLOAD_DIR, help="Specify download directory. " @@ -180,8 +169,6 @@ def main(): default=_DEFAULT_WEIGHTS_DIR, help="Specify weights extracted directory. " "[{}]".format(_DEFAULT_WEIGHTS_DIR)) - parser.add_argument("--filter", nargs='*', default=[], - help="an re pattern to filter candidates.") parser.add_argument("-q", "--quiet", action="store_true", help="download quietly") args, _ = parser.parse_known_args() @@ -204,7 +191,8 @@ def get_leaf(key: str, node: dict): need_to_download[k] = v except (FileNotFoundError, OSError): pass - for k, v in get_leaf(args.weights_dir, WEIGHTS): + from VSR.Backend import BACKEND + for k, v in get_leaf(args.weights_dir, WEIGHTS[BACKEND]): if user_input(k.stem, args.quiet, args.filter): need_to_download[k] = v need_to_extract = {} @@ -226,7 +214,22 @@ def get_leaf(key: str, node: dict): open_fn = zipfile.ZipFile is_match_fn = zipfile.is_zipfile else: - raise TypeError("Unrecognized extension: {}".format(ext)) + class copy: + def __init__(self, src): + self.src = src + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + return + + def extractall(self, dst): + import shutil + shutil.copy(self.src, dst) + + is_match_fn = lambda x: True + open_fn = copy if is_match_fn(v): with open_fn(v) as fd: try: