forked from minimaxir/automl-gs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparameters.yml
173 lines (170 loc) · 4.16 KB
/
hyperparameters.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Hyperparameters shared by all model frameworks
base:
base_lr: # base learning rate for the model optimizer
type: base
hyperparams:
- !!float 1e-1
- !!float 1e-2
- !!float 1e-3
- !!float 1e-4
numeric_strat: # strategy for handling numeric inputs
type: numeric
hyperparams:
- minmax # scales the numeric value to [0,1] w/ MinMaxScaler
- standard # scales using StandardScaler
- quantiles # splits the field into 4 quantile buckets for binary-encoding
- percentiles # splits the field into 10 percentile buckets for binary-encoding
datetime_month: # include categorical month when encoding datetimes
type: datetime
hyperparams:
- True
- False
datetime_year: # include categorical year when encoding datetimes
type: datetime
hyperparams:
- True
- False
# datetime_holiday: # include categorical holiday when encoding datetimes
# type: datetime
# hyperparams:
# - True
# - False
categorical_strat: # strategy for handling categorical inputs
type: categorical
hyperparams:
- all_binary # encodes all levels with binary-encoding
- top10_perc # encodes top 10% of levels, encodes rest as "other"
- top50_perc # encodes top 50% of levels, encodes rest as "other"
tensorflow:
weight_decay: # AdamW Weight Decay
type: base
hyperparams:
- !!float 5e-2
- !!float 25e-3
- !!float 1e-2
batch_size: # training batch size
type: base
hyperparams:
- 64
- 128
- 256
text_max_length: # maximum number of input words to use for text
type: text
hyperparams:
- 10
- 20
- 40
text_dropout: # input text dropout for text-encoding
type: text
hyperparams:
- 0.0
- 0.2
- 0.5
text_rnn_type: # type of RNN for text-encoding
type: text
hyperparams:
- LSTM
- GRU
text_rnn_size: # size of RNN for text-encoding
type: text
hyperparams:
- 32
- 64
- 128
text_embed_size: # size of Embeddings for text-encoding
type: text
hyperparams:
- 20
- 50
- 100
mlp_blocks: # number of MLP blocks after feature concatenation
type: base
hyperparams:
- 2
- 4
- 6
mlp_first_size: # size of the first Dense layer in the MLP blocks
type: base
hyperparams:
- 64
- 128
- 256
mlp_size: # size of the Dense layers in the MLP blocks
type: base
hyperparams:
- 64
- 128
- 256
mlp_dropout: # dropout of the Dense layers in the MLP blocks
type: base
hyperparams:
- 0.0
- 0.2
- 0.5
mlp_activation: # activation function for Dense layers in the MLP blocks
type: base
hyperparams:
- relu
- selu
mlp_regularizer: # l2 regularization value for Dense layers in the MLP blocks
type: base
hyperparams:
- !!null None
- l2(1e-2)
- l2(1e-3)
output_regularizer: # l2 regularization value for the final output layer
type: base
hyperparams:
- !!null None
- l2(1e-2)
- l2(1e-3)
reg_objective: # regression objective for the model (can differ from experiment objective)
type: regression
hyperparams:
- mse
- msle
- mape
- poisson
xgboost:
max_depth: # maximum depth of tree
type: base
hyperparams:
- 3
- 5
- 7
- 9
gamma: # gamma regularization
type: base
hyperparams:
- 1
- 5
- 10
min_child_weight: # minimum child weight for split
type: base
hyperparams:
- 1
- 3
- 5
subsample: # proportion of rows to subsample for trees
type: base
hyperparams:
- 0.5
- 0.8
- 1.0
colsample_bytree: # proportion of columns to subsample for trees
type: base
hyperparams:
- 0.3
- 0.8
- 1.0
max_bin: # max bins for hist binning
type: base
hyperparams:
- 128
- 256
- 512
reg_objective: # regression objective for the model (can differ from experiment objective)
type: regression
hyperparams:
- reg:linear
- count:poisson