forked from minimaxir/automl-gs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.yml
73 lines (68 loc) · 1.42 KB
/
metrics.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# `full_name`, `abbr`, and `format` affect metric display in visualizations
# `objective` specifies which direction to go for optimization.
regression:
['mse', 'mae', 'r_2']
binary_classification: # uses macro averaging when available
['log_loss', 'accuracy', 'auc', 'precision', 'recall',
'f1']
classification: # uses micro averaging when available
['log_loss', 'accuracy', 'precision', 'recall',
'f1',]
# Regression Metrics
mse:
full_name: Mean Squared Error
abbr: MSE
objective: min
mae:
full_name: Mean Absolute Error
abbr: MAE
objective: min
msle:
full_name: Mean Squared Logarithmic Error
abbr: MSLE
objective: min
poisson:
full_name: Poisson Loss
abbr: Poisson Loss
objective: min
r_2:
full_name: R²
abbr: R²
objective: max
# Binary/Classification Metrics
log_loss:
full_name: Log Loss
abbr: Log Loss
objective: min
categorical_crossentropy:
full_name: Categorical Loss
abbr: Categorical Loss
objective: min
binary_crossentropy:
full_name: Binary Loss
abbr: Binary Loss
objective: min
accuracy:
full_name: Accuracy
abbr: Accuracy
objective: max
format: percent
precision:
full_name: Precision
abbr: Precision
objective: max
format: percent
recall:
full_name: Recall
abbr: Recall
objective: max
format: percent
f1:
full_name: F1 Score
abbr: F1
objective: max
format: percent
auc:
full_name: Area Under the ROC
abbr: ROC AUC
objective: max